
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SESoS'16, May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4172-1/16/05#$15.00
DOI: http://dx.doi.org/10.1145/2897829.2897831

Building Dynamic, Long-Running Systems
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI. 02912 USA
spr@cs.brown.edu

Qi Xin
Department of Computer Science

Brown University
Providence, RI 02912 USA

qx5@cs.brown.edu

ABSTRACT
Complex applications that are effectively systems-of-systems are
becoming more common and more useful. Our goal is to devise
new ways of architecting such systems that will make their
programming easier. We take a component oriented approach. A
component’s interface, which we call an outerface, includes not
only the syntax of the component, but also its semantics and
constraints on its use. Implementations of outerfaces are defined
separately. Our underlying framework, TAIGA, lets the user code
directly to the outerface and automatically finds, validates and
binds an appropriate implementation. The framework handles
component evolution and failure by detected changes and
dynamically revalidating and rebinding possibly new
implementations to existing outerfaces while maintaining the
running system. We are currently working on extending this
framework to handle modern, distributed systems-of-systems.

Categories and Subject Descriptors
CCS: Software and its Engineering: Software Organization and
Properties: Software System Structure: Ultra-large-scale sys-
tems.

Keywords
Distributed systems; evolution; interfaces.

1. INTRODUCTION
Long-running, complex systems-of-systems have been around
for a long time but are now becoming increasingly common
and less specialized. Originally, systems of systems were
designed for closed, stable environments such as telephony,
ships, airplanes, or automobiles. Today, common applications,
such as Waze [9] can be considered systems-of-systems since
they depend on code running on both a wide variety of local
devices (e.g. phones) as well as systems running on a distrib-
uted set of servers.

Such applications are difficult to write and maintain. They are long
running and can’t easily be taken down and restarted. They are
distributed, with components running on a variety of devices

linked by potentially unstable networks. They have widely varying
loads over time. They must handle recovery and dynamic
evolution. Moreover, as they become more common, security and
similar concerns become more important.

Our research is aimed at making it relatively easy to write such
large-scale applications that make use of today’s computers and
environments and that can address these various problems.

2. PROBLEMS
There are a number of issues that have to be addressed when
programming such complex, long-running systems.

The systems are first characterized by the use of distributed
components running on machines that may be out of the control of
the originator. These components are likely to both change and
fail. For example, a web service might go down arbitrarily. Over
time, services used by the system might evolve, adding additional
functionality or even removing existing functionality. (For
example, the original Google search service returned the open-
directory category for each web page. At some point, this was
discontinued although the data field for it remained.) Operating
systems, libraries, etc. on user-owned devices will be updated
periodically with new or modified functionality. Open source
libraries will evolve. Portable devices will be shut down and
periodically lose or gain connectivity.

A second issue is that these evolving applications should be able to
make use of the data available from today’s devices. Waze, for
example, uses position updates on phones to deduce traffic
conditions. Other applications might want to make similar use of
position information, weather information, health information, etc.
A new application shouldn’t have to duplicate the code to obtain or
process this information from multiple devices. Suppose, for
example, one wanted to write an application for handling
emergencies. One would want to access health information from
those in the affected area but it would be unreasonable to expect
that everyone was running you application to start with. When
providing and accessing such data, one also needs to take into
account security and privacy concerns.

A third issue is that dynamic applications should be able to make
effective use of dynamically changing computing capabilities. An
application using speech recognition might prefer to send the raw
data to a server to do the recognition. However, if the server is not
available, there might be other source, perhaps a secondary server
that is slower or less accurate, that could be used. If this is not
available, it might be possible to do limited accuracy recognition
on the local device itself. The system should handle such changes

2016 4th International Workshop on Software Engineering for Systems-of-Systems

 19

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2897829.2897831&domain=pdf&date_stamp=2016-05-14

automatically while taking into account system load, power,
availability, accuracy, etc.

A fourth issue is that such systems are quickly becoming too big
for one person or even one programming team to build everything.
To make programming such systems easier, one would want to
utilize existing solutions wherever possible. This means embracing
open source code, and making use of systems and components
(such as web or micro services and libraries) that are written and
maintained by others. Such use must take into account such factors
as security and costs, and must deal with the fact that these
components can and will change without notice.

3. OVERVIEW
In order to address these problems and make programming
large-scale open-source, distributed, evolving systems easier,
we need new ways of thinking on how they are constructed. A
suitable programming framework for such systems should
make them straightforward to code. The framework should
address both transient and permanent failures. It should handle
the evolution of the various component systems. It should han-
dle data sources and access. It should do all this while address-
ing security and privacy concerns as well as various costs.

An appropriate framework for constructing such complex systems
is a hierarchical component-based model. Each of the subsystems
of the system can be viewed as a component. These systems are in
turn made up of other components, either external such as micro
services, or internal such as libraries, classes, or other packages.
Failures can then be viewed as component failure; evolution as
component evolution; security as component security.

Such a framework puts a heavy emphasis on the interfaces
between the components. This is consistent with accepted
methodologies for building systems of systems [5] where the
underlying systems are just implementations of these interfaces.

The problem that arises in this model is what is a component. The
standard notion of a component is that there is a well-defined
interface and the component is an implementation of that interface.
Then the question is what is an interface.

A typical interface defines the calling sequences for using the
component. This is primarily a syntactic definition, providing the

calling names, signatures, passed and returned data types, etc.
While this is necessary for programming evolving systems, it is
not sufficient for a complex application. Interfaces need to include
more information and need to include it in a way that it can be used
directly by the underlying system and its framework.

The primary information beyond the syntactic is the interface’s
semantic definition This should describe what the component does
and how it should be used. To be used in a practical framework,
this definition needs to be understandable to machines. Formal
specifications, while meeting this requirement, are generally not
practical to write for large scale components and often cannot be
written at all. Other techniques, such as test cases and partial
contracts, are more practical and useful.

Beyond semantic information, the interface needs to include other
data that will be needed by the framework for handling evolution,
security, and similar constraints. The interface should include a
security model describing what the implementation can and can’t
do. It should include a cost model that would let the application or
framework choose among multiple implementations. It should
include information on how to recover or restart on failure. It
should include data privacy constraints if private data is involved.

4. PREVIOUS WORK
Our previous work in this area, TAIGA [6-8], was aimed at a
slightly different problem, although there is much in common.
TAIGA considered desktop applications that made use of web
services and similar open implementations. It assumed a
crowd-sourced environment where people would contribute
designated implementations (e.g. web services, libraries, serv-
ers) that would be automatically incorporated into a long-run-
ning system with appropriate failure semantics. It did not
address any problems involving data.

TAIGA uses a hierarchical component model. Components are
defined by outerfaces. A sample outerface is shown in Figure 1 An
outerface defines all the relevant properties of the component. It
includes a Java-like interface defining the syntax of the
component. As with Java interfaces, this can include method calls
and internal classes and interfaces. Unlike Java interfaces, but

Figure 1. Sample Outerface Definition.

outerface edu.brown.cs.webview.taiga.WebManager {

description {{
This outerface manages a set of files for the webview application, ensuring
that they do not get too long. A transfer record is added to a file when it
does exceed the 1M length limit

 }}

trait { rebind=true; }

class FileManager {
static public String getCurrentFile();
static public String getFileForDate(long date);

}

testcase Test0 {{
public static void test() {

FileManager.getCurrentFile();
TaigaTesting.success();

 }
 }}

} // end of outerface WebManager

20

consistent with the overall notion of a component, it can include
both constructors and static methods.

Next the outerface includes the semantics of the component. This
can be defined either in terms of test cases that any implementation
needs to pass, in terms of contracts both for the component and for
each method, or a combination of the two. The system guarantees
that an implementation passes all the given test cases and is
consistent with the contracts in doing so before allowing it to be
used. It is possible to restrict an outerface by adding additional test
cases or to extend it by adding additional methods.

Finally the outerface includes constraints on the implementation
including a cost model, security model, and recovery model. The
cost model provides a means for choosing among implementations
for this outerface. The security model is based on the Java Security
framework [4]. The recovery model provides information for
restarting an implementation based on previous calls.

Implementations are defined as mappings from an actual
implementation to an outerface. The mapping may specify a set of
classes that are to be bound into the application as a library, a set of
classes that are to be run independently as a server using a SOAP-
based remote procedure call protocol, or as a web service with a
particular URL and binding. Implementations can define minor
mappings of arguments, names, types, etc. between the actual
implementation and the interface defined by the outerface.
Implementations can also define additional properties such as the
scope of availability and the cost.

The system automatically and dynamically binds implementations
to outerfaces. It creates a stub class representing the outerface. The
first time a method in the class is called, the system finds an
implementation, validates it, and then binds it. Validating the
interface involves running the test cases. Choosing among
available interfaces is done using the cost model. The binding is
done to ensure the security constraints are met whenever possible.

If the component fails, it can be rebound. Failure is detected in lost
communication with remote servers, by missing responses from
web services, by unexpected exceptions, or by a violation of the
contracts imposed by an outerface. Rebinding involves first
unbinding the existing implementation and then finding and
validating a new implementation. To handle some non-trivial
rebindings, the system provides a simple framework for rebinding
implementations that maintain a context. The outerface can include
a set of variables defining the context and then define how this
context changes based on each call. The implementation then must
include a constructor taking the context variables as parameters
which is then used for rebinding.

The cost model can take into account the time or memory used in
the test cases, the type of binding, and the cost of the
implementation. It lets the user define a linear combination of
these and chooses the implementation with the lowest cost.

The security model provides a context for running the
implementation. For code that is bound into the user’s application,
calls are done through a security portal that imposes the given
context around the call. For code that is run on a server and where
the server is started by the system, the system will actually start a
security sandbox with the appropriate parameters to run the server.

TAIGA is designed to work in a crowd-sourced manner, with users
defining outerfaces as well as explicit implementations to
previously defined outerfaces. It is supported by a peer-to-peer
network that supports searching for outerfaces and
implementations, keeps track of available servers bound to
outerfaces, and provides global services such as a distributed file
system and point-to-point sockets. The overall system works by
having a small kernel run on each machine and having local
programs talk directly to the kernel which in turn talks to the peer-
to-peer network.

While TAIGA is a working system with a number of simple
applications and provides a model for a practical system-of-
systems framework, it is not at the stage where it can be used as the
basis for such a framework. There are several features that are
needed and that we are currently working on. These include:

• A means for handling data. Outerfaces to date are procedural
and pull-oriented. A data framework for modern systems
should allow data services to be defined with push semantics
and should provide standard data processing services within
the system. Our proposal is describe in Section 5.

• Better security. In order to ensure security and privacy, espe-
cially when data is involved, the system has to be secure. This
means that the kernel needs to be self-validating, that there
needs to be a consistent notion of user identity throughout the
system, and that security needs to be validated beyond the sim-
ple sandboxes that are only run some of the time.

• Better semantic definition of components. Test cases and par-
tial contracts are much more convenient and more widely
applicable than formal mathematical specifications. However,
it can be difficult or impossible to define test cases for many of
the target components. Other means are going to be needed.

• Support for a wider range of applications including RESTful
web services. It should be easy to use these as implementations
and they should be integrated into the recovery model.

• Support for distributed access to a database.
• An extended cost model. The current cost model can be

thought of as a place holder. The model needs to take into
account other factors such as accuracy and power consump-
tion. It also needs to be dynamic, since the factors that affect
the choice of implementation can change over time. In addi-
tion, the cost model should be extended to starting servers on a
grid. TAIGA currently just polls the local network to find a
machine on which to run a server.

• Deploying at scale. TAIGA has been run with up to 100 nodes,
but not at the much larger scale needed for today’s mobile-
based systems of systems. Moreover, the current system is ori-
ented toward workstations (i.e. almost always connected, no
concerns regarding power, etc.).

Our current work involves extending and redoing the existing
TAIGA implementation so that it is suitable for implementing
systems of systems, addressing these and other problems.

5. DATA PROCESSING
Many of the new potential systems-of-systems involve collect-
ing and using data. For example, a mapping applications might
collect data from phones regarding speeds and positions and
use it to derive road conditions. A home monitoring service
could check the health of various devices and report any prob-
lems. An emergency management system could look for health
monitors on people in the affected area and flag any problems.

21

Writing an application that makes use of such data today involves
creating the back ends that process the information, multiple front
ends (one for each type of applicable device) to generate the
appropriate data, and all the code needed to connect them. Much of
this effort could be shared among applications. For example,
position and movement data could be used for crowd control,
accumulating historic data on traffic patterns, or identifying hiking
or biking trails. Similarly, the type of processing required to
aggregate the data or to compute speed from changing positions
could be reused. Moreover, any data collection scheme has to
include code to make it robust, to handle failure, and to handle data
sources that come and go. This code should not have to be
duplicated for each application. TAIGA provided outerfaces and
their implementations to handle reuse and the dynamics of callable
code. A similar mechanism can be used to handle data.

We propose that data be viewed as another type of component. In
particular we define data the might be desired by an application
using a complete interface we call a dataface. A dataface is similar
to an outerface except for data. It defines the desired data and
provides a standard way of accessing it for an application. The
application can be coded directly to the database without regarding
the actual implementation. Using datafaces, the various mapping
applications noted above could use a common dataface that
describes location data. They could then be coded as it that data
were readily available and robust.

Similar to an outerface, a dataface includes syntax, semantics, and
other considerations. The syntactic definition defines the fields,
data types, and the set of operations that can be done on the data.
Operations would include different types of aggregations and
filters. The semantic definition in a dataface defines the expected
units for data, consistency properties, and any data constraints. It

lets the system determine if the provided data is valid and sensible.
The other considerations would include the cost of obtaining the
data, security and privacy considerations, the geographical domain
where the data is available, and third-party validation mechanisms
to ensures the validity of the requester.

An example dataface is shown in Figure 2. The top line defines the
dataface while the next provides a readable description that can be
used to understand what it does. The next set of lines defines the
fields of the dataface. These are similar to fields in a structure or
columns in a database table. The next set of lines provides
restrictions on the values of the fields. These provide consistency
and range checks. The following units declaration provides the unit
type for each of the fields. The system will have a built in set of
known units for which it can do automatic conversions. The next
two sections define the valid aggregation and filter operations. The
within aggregation is a bucketing operation that takes a value and
forms uniform buckets of that size. A filter type of * allows any
filtering operation, while a specific filter expression restricts filters
to that form. Note that these refer to the field “timestamp”. This
field is created automatically for all datafaces and contains the
time the data was generated.

A dataface can have multiple implementations or data providers. A
data provider defines how data can be accessed from a particular
source. It provides code to build the resultant dataface structure
from available resources (although the code could be specified
non-procedurally). It provides additional privacy and security
constraints on the use of the data, for example limiting the use of
the data to aggregates of at least a certain size or limiting the data
to authorized applications. It provides its own constraints and
consistency properties that can be matched to the dataface. The
provider also indicates whether the data is pushed or pulled.

dataface edu.brown.cs.taiga.location.GPSData {

description {{ location and speed information }}

location { double latitude, double longitude };
double accuracy;
double speed default 0;
double heading;

restricts {
-90 <= latitude <= 90,
-180 < longitude <= 180,
0 <= speed < 10000,
0 <= heading < 360

}

units {
accuracy : meters;
latitude : degrees;
longitude : degrees;
heading : degrees;
speed: meters / second;

}

aggregations {
location : within;
timestamp : within;
speed : within, mean, median, mode, variance;

}

filters {
location { * }
speed { $ <= speed < $ }
timestamp { $ <= timestamp < $ }

}

} // end of dataface GPSData

Figure 2. Sample Dataface

22

An example data provider definition for the dataface of Figure 2 is
shown in Figure 3. The implementation clause identifies the
dataface that is being provided; the using clause specifies where
the code is for the provider. To be used, the restricts clause must be
consistent with the definition in the dataface. Similarly, the units
clause must be consistent, although automatic conversion of
known units is allowed. The defined trait would ensure that any
aggregate of fewer than ten data elements would be discarded for
privacy purposes.

In order to access the data, the application calls static methods that
are generated automatically for the dataface. We expect two types
of calls. The first gathers data on demand according to a particular
filter and aggregation policy. Such a request would be pushed to
all relevant providers. The internal peer-to-peer network would be
responsible for aggregating the data and returning the summary to
the caller. This would off load the data processing from the
application and client and would let applications share the gathered
data. The second call is a stream-based query. It would also specify
filters and an aggregation policy and would include a time frame
and a callback routine. Data would be continuously gathered
(either by the providers offering the data to the system or by the
system polling providers), filtered, and aggregated in the network
and the results would periodically be sent back to the caller using
the callback routine. To make this simpler from the programmer’s

perspective we are considering various SQL stream-based query
languages [1,2],

Two possible queries or requests for the dataface of Figure 2 are
shown in Figure 4. Both refer explicitly to the dataface and not to
the implementations. The first would return (via an appropriate
callback) aggregations of location data every 30 seconds. The
aggregation would be in buckets of 0.001 degrees latitude and
0.001 degrees longitude and would only include values where the
error is less than 50 meters. The second would return all data
points with location, speed and heading every 5 seconds provided
that the accuracy is less than 10 meters. Note that the example data
provider would not offer such information since the minimum
aggregation size would not be met.

Security and privacy are a major concerns when accessing data
that may be sensitive or privileged. We plan to address these
concerns in various ways. First, the data providers will be able to
limit access to the data based on the filters involved and a
minimum aggregation count. While this doesn’t provide absolute
protection, it would make it much more difficult to identify
individual data elements. Second, we plan to have data that can be
released only upon valid authorization of the requester. This would
allow the data providers to be selective in terms of who can access
the data. Finally, we are looking into applying differential privacy

dataprovider edu.brown.cs.taiga.location.WebGPS {

description {{ information from html5 geolocation }}

implements edu.brown.cs.taiga.location.GPSData;

using edu.brown.cs.taiga.weblocator.WebGPS;

restricts {
-90 <= latitude <= 90,
-180 < longitude <= 180,
0 <= speed < 10000,
0 <= heading < 360

}

units {
accuracy : meters,
latitude : degrees,
longitude : degrees,
heading : degrees,
speed: meters / second

}

trait {
min_aggregate = 10

}

} // end of data provider WebGPS

Figure 3. Sample Data Provider Definition

SELECT count, location, timestamp, FROM GPSData
AGGREGATE location { latitude within 0.001, longitude within 0.001 },
FILTER accuracy < 50
WINDOW 30000

SELECT location, timestamp, speed, heading FROM GPSData
FILTER accuracy < 10
WINDOW 5000

Figure 4. Sample Dataface Queries

23

techniques in the processing of data to provide approximate results
while ensuring privacy [3].

6. STATUS

TAIGA is a working prototype. It is running at Brown on a
variety of machines and is accessible from outside. In addition
to the work on data processing, we are currently extending the
implementation to handle a variety of platforms (e.g. phones,
Internet of Things), improving the underlying network,
improving security, enhancing the testing framework to handle
a wider variety of tests, extending the cost model to handle
power and accuracy, applying the cost model to finding grid
nodes to run servers on, adding RESTful implementations, and
developing new sample applications.

Source code for TAIGA is available from our web site
(http://www.cs.brown.edu/people/spr/research/taiga.html) or via
ftp at ftp://ftp.cs.brown.edu/u/spr/taiga.tar.gz.

7. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation grant
CCF1130822.

8. REFERENCES
1.

2. Arvind Arasu, Shivnath Babu, and Jennifer Widom, “The
CQL continuous query language: semantic foundations and
query execution,” The VLDB Journal 15(2) pp. 121-142
(2006).

3. Cynthia Dwork, “Differential privacy: a survey of results,”
pp. 1-19 in Proceedings of the 5th international conference
on Theory and applications of models of computation, (2008).

4. J. Steven Fritzinger and Marianne Mueller, “Java Security,”
Sun Microsystems, (1996).

5. M. W. Maier, “Architecting principles for systems-of-
systems.,” Systems Engineering 1(4) pp. 267-284 (1998).

6. Steven P. Reiss, “Evolving Evolution,” 8th International
Workshop on the Principles of Software Evolution, pp. 136-
139 (September 2005).

7. Steven P. Reiss, “A component model for Internet-scale
applications,” Proceedings ASE 2005, pp. 34-43 (November
2005).

8. Steven P. Reiss, “Designing Internet-based software,”
Proceeding of the Second International Conference on
Design Science Research, (May 2007).

9. Waze, “Waze Home Page,” http://www.waze.com, (2016).

24

