
Towards Practical and Useful Automated Program Repair
for Debugging

Qi Xin
qxin@whu.edu.cn

School of Computer Science, Wuhan University
Hubei Luojia Laboratory

China

Haojun Wu
haojunwu@whu.edu.cn

School of Computer Science, Wuhan University
China

Steven P. Reiss
spr@cs.brown.edu

Department of Computer Science, Brown University
USA

Jifeng Xuan∗
jxuan@whu.edu.cn

School of Computer Science, Wuhan University
China

ABSTRACT
Current automated program repair (APR) techniques are far from
being practical and useful enough to be considered for realistic
debugging. They rely on unrealistic assumptions including the re-
quirement of a comprehensive suite of test cases as the correctness
criterion and frequent program re-execution for patch validation;
they are not fast; and their ability of repairing the commonly aris-
ing complex bugs by fixing multiple locations of the program is
very limited. We hope to substantially improve APR’s practicality,
effectiveness, and usefulness to help people debug. Towards this
goal, we envision PracAPR, an interactive repair system that works
in an Integrated Development Environment (IDE) to provide effec-
tive repair suggestions for debugging. PracAPR does not require a
test suite or program re-execution. It assumes that the developer
uses an IDE debugger and the program has suspended at a location
where a problem is observed. It interacts with the developer to ob-
tain a problem specification. Based on the specification, it performs
test-free, flow-analysis-based fault localization, patch generation
that combines large language model-based local repair and tailored
strategy-driven global repair, and program re-execution-free patch
validation based on simulated trace comparison to suggest repairs.
By having PracAPR, we hope to take a significant step towards
making APR useful and an everyday part of debugging.

ACM Reference Format:
Qi Xin, HaojunWu, Steven P. Reiss, and Jifeng Xuan. 2024. Towards Practical
and Useful Automated Program Repair for Debugging. In Proceedings of
International Workshop on Software Engineering in 2030 (SE 2030). ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SE 2030, November 2024, Puerto Galinàs (Brazil)
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 MOTIVATION
Programs are rarely bug-free. Debugging is an indispensable ac-
tivity in software development. It is however very costly, and can
consume up to 50% of the programming time [6]. To reduce the cost
of debugging and make it easier, researchers have proposed the con-
cept of automated program repair (APR) [9, 11, 28, 52] whose goal is
to automatically generate a patch that corrects a buggy program’s
misbehavior. For over a decade, more than 60 APR techniques have
been developed [29, 36]. They have sought to achieve automated
repair via various strategies generally classified as pattern-based
(e.g., [17, 24, 40]), constraint-based (e.g., [26, 48]), search-based
(e.g., [12, 43]), and learning-based [52].

Despite the promising potential, current APR techniques are
far from being practical and useful enough to be integrated into
an IDE for debugging. Three key challenges remain. First, current
approaches are designed based on unrealistic assumptions. They as-
sume the existence of a test suite serving as the correctness criterion
and require frequent program re-execution for repair validation.

In a realistic debugging scenario, one cannot assume the exis-
tence of a (high-quality) test suite, especially in the initial develop-
ment phase of the software. Studies have shown that developers
do not write test suites containing a sufficient number of test cases
or even do not write tests at all [4, 19]. As also noted by Koyuncu
et al. [20], bugs are often reported without an available test suite
revealing them. Surprisingly, the bug-revealing test cases for over
90% of the bugs in the Defects4J dataset [15] were introduced after
the bug was identified.

While some techniques [2, 3, 8, 20, 41] have sought for test-free
repair, they are restricted to handling specific types of bugs (e.g.,
the heap-property faults [41]) and potential issues flagged by static
analyzers and are not designed to repair general semantic bugs that
arise while debugging.

The reliance on frequent program re-execution also makes APR
not practical. In a realistic debugging scenario, recreating the envi-
ronment for the immediate failure caused by the bug can be difficult
since the failure can be identified in a long run or in an interactive
session. Moreover, frequent program re-execution makes APR not
fast. Current approaches can take minutes (e.g., [14]) or even hours
to repair one bug [25]. Studies showed that developers prefer not
to wait for too long [30] for repair. One can also imagine that APR,

ar
X

iv
:2

40
7.

08
95

8v
1

 [
cs

.S
E

]
 1

2
Ju

l 2
02

4

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SE 2030, November 2024, Puerto Galinàs (Brazil) Qi Xin, Haojun Wu, Steven P. Reiss, and Jifeng Xuan

if integrated into an IDE to provide repair suggestions, is highly
expected to be quick.

Second, while APR has made remarkable progress towards local
repair by generating patches addressing a single location of the
program, the repair ability is still weak. Our statistics based on the
previous evaluation of existing tools shows that traditional non-
learning-based approaches can only repair a small fraction (less
than 23%) of the 150 single-hunk bugs in the Defects4J v1.2 dataset.
For these bugs, the developer patches change only a single hunk
of code. Learning-based approaches, especially those using a large
language model (LLM) [10, 13, 16, 39, 45, 47], represent a significant
improvement. However, a state-of-the-art approach Repilot [42] still
failed to repair 86 (or 57.3%) of the single-location bugs. Moreover,
existing techniques can generate spurious overfitting patches [21,
32, 38, 49], which are harmful and can adversely affect debugging [7,
30]. In summary, APR’s weak ability of local repair can lower the
developer’s trust of APR in dealing with even simple bugs and make
the developer unwilling to use APR for debugging.

Finally, current APR cannot do effective global repair to tackle
complex multi-location bugs whose fix requires changes for multi-
ple locations of the program. Zhong and Su [53] found that multi-
location bugs are common. At least 40% of real-bug fixes made by
developers are used to tackle such bugs. This finding implies that if
APR is not designed to support multi-location repair, it can have
very limited usefulness. To enhance the usability of APR, previous
techniques have attempted to address multi-location bugs using
strategies such as genetic algorithms [22, 51], detection and update
of evolutionary siblings [37], variational execution [44], deep learn-
ing [23], and iterative self-supervised training [50]. A key problem
of these approaches is that most of the repaired multi-location bugs
are actually multi-fault bugs exposed by multiple failures. A multi-
fault bug can be decomposed into multiple single-fault bugs and is
rare in realistic debugging, as developers typically deal with one
failure (fault) at a time [18, 31]. To understand how existing ap-
proaches deal with single-fault multi-location bugs that commonly
arise while debugging, we did a study and found that (1) about
half (49.5%) of the multi-location bugs in the Defects4J v1.2 dataset
are multi-fault, (2) the dataset has 118 single-fault multi-location
bugs, and (3) current techniques [23, 37, 44, 46, 50, 51, 55] repaired
at most 8 of them. This result shows that current APR’s ability of
repairing complex multi-location bugs is poor.

2 AN ENVISIONED REPAIR SYSTEM FOR 2030
We envision a repair system PracAPR that addresses the aforemen-
tioned challenges and provides quick repair suggestions for realistic
debugging. Figure 1 shows an overview of PracAPR. To overcome
the unrealistic-assumption drawback, PracAPR does not assume the
existence of a test suite and does not require program re-execution.
It works in conjunction with an IDE debugger and assumes that
the program is stopped at a location where a problem is observed.
PracAPR interacts with the developer to obtain a description of
the problem and performs test-free fault localization, patch genera-
tion, and patch validation based on the description (the problem
specification) to generate repair suggestions. Without a test suite,
PracAPR performs flow-analysis-based fault localization while tak-
ing into account the problem symptom, current values from the

debugger, and the current runtime stack to compute a backward
slice containing potential repair locations. Patch generation is done
with local and global repair, which we will discuss later. Patch val-
idation does not require program re-execution. Instead, PracAPR
generates via a live programming mechanism simulated traces that
reflect the real executions of the original and repaired programs and
compares the traces to infer patch correctness. Finally, PracAPR
presents the repair suggestions to the developer. The developer can
choose to preview any of the repairs and further accept it to allow
changes to be applied to the program.

For local repair, PracAPR uses an LLM-based approach, aiming
to improve APR’s repair ability in fixing more local bugs (that
require changes of a single location of the program) and fixing
them more precisely (by generating fewer bad patches). To this
end, PracAPR uses an informative prompt that includes the buggy
location, its context, the failure input and output, dynamic execution
information (including for example the coverage and key program
states), promising patterns and fix ingredients, and user guidance
to help LLM accurately diagnose the problem and propose effective
patches. PracAPR also allows conversational repair and refinement
and re-fixing of the patches to improve the repair quality.

For global repair, PracAPR uses a variety of strategies distilled
from our analysis of multi-location patches that led to a charac-
terization of 8 types of partial patch relationships. The strategies
include performing iterative repair to generate patches location by
location to address bugs that require fixing different issues, per-
forming simultaneous repair to address related issues, using local
repair to tackle single-location-alike bugs, and using pattern-based
methods to generate other common patches that involve for exam-
ple adding a definition and use of a variable and inserting if-wrap
code (i.e., an if-statement wrapping a code hunk).

3 ONGOING AND FUTUREWORK
We next discuss our ongoing and future work for realizing PracAPR.

3.1 Interactive Test-Free Repair Framework
Wehave developed an interactive test-free repair framework ROSE [33],
which provides initial solutions for fault localization and patch val-
idation without requiring a test suite and program re-execution.

ROSE works in the Eclipse-based Code Bubbles IDE [5] and
allows easy integration of existing APR patch generators. ROSE
assumes that the program is suspended at a location where unex-
pected behavior is observed. It interacts with the developer to obtain
a problem description. The developer can specify that an exception
is unexpected, a line should not be executed, or a variable should
not hold a certain value. Based on the specification, ROSE performs
test-free fault localization using an abstract-interpretation-based
flow analysis to statically compute a partial backward slice contain-
ing potential repair locations. It invokes the patch generators that
have been plugged into the framework to make patches for those
locations. For patch validation without using test cases or allowing
dynamic program re-execution, ROSE generates simulated traces
based on a live-programming system SEEDE [35] for both the orig-
inal and repaired executions and then compares the traces with
respect to the problem to infer patch correctness. Finally, ROSE
presents a limited number of prioritized patches. The developer can

Towards Practical and Useful Automated Program Repair
for Debugging SE 2030, November 2024, Puerto Galinàs (Brazil)

Buggy
Program

Developer

1. Problem
Specification Problem

Specification

2. Test-Free
Fault

Localization Repair
Locations

3. Patch
Generation

Patches

4. Program
Re-execution-

Free Patch
Validation

Patches
for Preview

5. Patch
Presentation

Validated
Patches

• LLM-Based Local Repair
• Tailored Strategy-Driven

Global Repair

Integrated Development Environment (IDE)

Figure 1: An overview of the PracAPR repair system.

choose a patch for a preview, which highlights the code before and
after the repair with differences, and ask ROSE to make the repair.
More details can be found in [33, 34].

We evaluated the effectiveness and utility of ROSE with a repair
experiment and a user study. Our results showed that ROSE’s test-
free fault localization and patch validation are highly effective:
the fault localization included the correct repair location for 89%
of the bugs tested and the patch validation gave a top-5 rank for
all correct repairs; that a ROSE-based tool can repair as many as
36/40 QuixBugs and 37/60 Defects4J bugs in only seconds; and that
ROSE helped 44% more participants succeed in a debugging task
and helped reduce the debugging time by about 16.5%. Overall, we
believe that ROSE is a promising repair framework that can make
debugging easier.

We plan to build PracAPR on top of ROSE, and we see two
ways for improvement. First, we want to improve ROSE’s user
interaction for problem specification by exploring not only a better
presentation of the failure information to facilitate understanding
of the program semantics and the failure but also more forms of the
specification (based on for example constraints and even natural
language) to effectively guide fault localization and patch validation.
Second, we want to investigate learning-based trace comparison
while considering more information about the execution to enhance
patch validation.

3.2 LLM-Based Local Repair
The LLM has demonstrated superior abilities in repairing software
bugs [45, 47]. We believe that an LLM-based approach is promising
in generating high-quality local patches (addressing single locations
of the program for repair). Since ChatGPT is widely recognized
as a prominent LLM for tackling various software engineering
tasks, we consider a ChatGPT-based approach that serves as a key
component of PracAPR to accurately infer the problem and provide
a low number of promising patches for effective local repair.

We are conducting a study to understand the failure of ChatGPT-
based approaches [45, 47] and motivate possible ways for improve-
ment. We seek to answer three research questions: (1) What are the
characteristics of the bugs that ChatGPT fails to repair? (2) What

1public TimeSeries createCopy(int start, int end)
2 throws CloneNotSupportedException {
3 if (start < 0) {
4 throw new IllegalArgumentException("Requires start >= 0.")

;
5 }
6 if (end < start) {
7 throw new IllegalArgumentException("Requires start <= end.

");
8 }
9 TimeSeries copy = (TimeSeries) super.clone();

10 + copy.minY = Double.NaN;

11 + copy.maxY = Double.NaN;

12 copy.data = new java.util.ArrayList();
13 if (this.data.size() > 0) {
14 for (int index = start; index <= end; index++) {
15 TimeSeriesDataItem item
16 = (TimeSeriesDataItem) this.data.get(index);
17 TimeSeriesDataItem clone = (TimeSeriesDataItem) item.

clone();
18 try {
19 copy.add(clone);
20 }
21 catch (SeriesException e) {
22 e.printStackTrace();
23 }
24 }
25 }
26 return copy;
27}

Figure 2: Patch for the Chart_3 bug.

are the most common mistakes that ChatGPT makes? and (3) How
to improve ChatGPT to repair more bugs?

Our current result shows that existing approaches are weak in
that they use prompts that include only the buggy location, its lim-
ited context, and shallow information about the failure (including
the input and the failing assertion). This is often insufficient for
ChatGPT to understand the program semantics and the problem
and can result in incorrect patches raising new problems.

Figure 2 shows for example the buggy method for the Defects4J
Chart_3 bug and the patch (lines 10 and 11). To repair the bug,
a state-of-the-art ChatGPT-based approach ChatRepair [47] uses
a prompt that includes the code of the buggy method, the name
of the failing test case testCreateCopy3, the failing assertion
assertEquals(101.0, s2.getMaxY(), EPSILON), and

SE 2030, November 2024, Puerto Galinàs (Brazil) Qi Xin, Haojun Wu, Steven P. Reiss, and Jifeng Xuan

the failuremessageexpected:<101.0> but was:<102.0>.
It does not however inform ChatGPT of the test input triggering
the failure. Nor does it describe the behavior of the invoked method
add (line 19) showing how minY and maxY are updated (key in-
formation for bug understanding) and provide the details about
the failure execution. Due to insufficient knowledge of the failure,
ChatGPT’s problem diagnosis is shallow and inaccurate – it thought
that there is a problem with the loop copying the data and did not
seem to understand that it was the update of the minY and maxY
values that causes the error. As a result, ChatGPT proposed a patch
changing the loop condition (line 14), which is incorrect.

To help ChatGPT understand the failure, we plan to use an
augmented prompt that includes not only what ChatRepair uses in
its prompt but also the code of the failing test case (including the
test input), the definition of related methods (including add), and
the execution trace showing not only what lines are exercised in the
failure run and their order but also the key program state (variable
and field values). Using a prompt like this, ChatGPT successfully
understands that the failure is related to “how the min and max y
values are updated after copying a subset”. This finally leads to a
patch that correctly updates the min and max y values.

An augmented prompt, even with more failure and execution
information, may not necessarily help ChatGPT figure out what is
wrong. And even if ChatGPT precisely understands the problem, it
may still fail to generate the correct patch tackling the problem in
the right way. For example, ChatGPT may know that there is an
invalid case where the start index is greater than end but can
be unsure about how to process it – whether the program should
throw an exception, return a special value, or do something else.
One way to mitigate this problem is to solicit user feedback showing
for example an exception is expected, a certain line should not be
executed, or a variable should not hold a value.

In addition to using augmented prompts, we will also explore
combining ChatGPT with traditional pattern-based and search-
based methods (finding for example effective patterns and fix in-
gredients) to guide the repair, performing conversational repair
highlighting the (negative) influence of the previous patches to
allow ChatGPT to reflect on its mistakes for improvement, and
conducting post-processing operations refining and re-fixing the
patches to improve repair quality.

3.3 Global Repair Driven by Tailored Strategies
Existing global repair techniques have adopted various strategies for
multi-location repair. The evaluation of these techniques is however
based on the Defects4J bug dataset [15] and is severely misguided,
as the dataset is filled with multi-fault bugs. Multi-fault bugs can
be decomposed into independent single-fault bugs triggering dif-
ferent failures. Repairing multi-fault bugs by handling multiple
failures simultaneously is practically uncommon for debugging, as
the developer typically deals with one failure at a time [18, 31].

To understand existing approaches’ abilities of repairing single-
fault multi-location bugs, we proposed an approach to detect such
bugs and found that there are 118 single-fault multi-location bugs
in the Defects4J v1.2 dataset and that current approaches [23, 37,
44, 46, 50, 51, 55] repaired at most 8 bugs, suggesting weak repair
abilities.

We aim to design a global repair approach that can effectively
address single-fault multi-location bugs. Towards this goal, we went
about analyzing the developer (ground-truth) patches for a sample
of the single-fault multi-location bugs (about one third, or 75 in
total). We wanted to understand why the repair needs to addresses
multiple locations, what are the characteristics of the partial patches
made at different locations, and furthermore what strategies to
consider for patch generation based on the characteristics.

The analysis has led to a characterization of 8 partial patch
relationships summarized below.

• DU: Partial patches with this relationship add the definition
of variables, fields, packages, or methods and later use what
has been defined for repair.

• OA: Partial patches with this relationship can be done in
one repair action or operation by for example adding an
if-statement wrapping a code hunk.

• RIF: This relationship indicates that the partial patches are
used to address related issues that arise in different locations.

• DIF: This relationship indicates that the partial patches ad-
dress different issues arising from different program parts
that may implement the same functionality.

• EOH: Partial patches with this relationship can be consid-
ered as a single-hunk patch for reasons such as that there is
only one partial patch that is semantically needed and the
others are created only to improve readability.

• SU: In this relationship, some partial patches are created to
do the setup work by updating a variable, field, or method
while the others use what has been updated for repair.

• ONPF: In this relationship, some partial patches can fix the
original problem and resolve the original failure. Unfortu-
nately, they also raise new problems triggering new failures,
which can be tackled by other partial patches.

• FU: Some partial patches serve as the primary changes
for correcting the misbehavior of the program. Others are
needed to undo the negative influence brought by the previ-
ous changes.

As the next step, we plan to design specialized repair strategies
based on the relationships and develop a global repair approach
that uses these strategies to obtain guided exploration for effective
multi-location repair. An approach that we envision to have uses
the LLM-based method discussed in Section 3.2 to generate single-
location patches. It performs iterative repair via repeated single-
location-based fault localization and patch generation to generate
patches of the DIF, ONPF, and FU relationships. Unlike existing
approaches [50, 51], our approach considers a variety of program
syntactic and semantic features and execution information to infer
promising patches for further evolution. To generate the RIF patch,
our approach reuses a simultaneous strategy [37] that identifies
locations for co-evolution and applies similar changes to those
locations. The approach relies on local repair to address EOH and
uses pattern-based methods to generate DU, SU, and OA patches.

We envision to have a suite of specialized patch generators.
Once a failure occurs, one would not easily know which gener-
ators to use for repair but can run all the generators in parallel
to get all the patches. This can be further improved via a trained
multi-classifier [1, 27] to select the most suitable generators or an
ensemble approach (e.g., [54]) for generator prioritization.

Towards Practical and Useful Automated Program Repair
for Debugging SE 2030, November 2024, Puerto Galinàs (Brazil)

REFERENCES
[1] Aldeida Aleti and Matias Martinez. 2021. E-APR: Mapping the effectiveness of

automated program repair techniques. Empirical Software Engineering 26 (2021),
1–30.

[2] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–27.

[3] Rohan Bavishi, Hiroaki Yoshida, and Mukul R Prasad. 2019. Phoenix: Automated
data-driven synthesis of repairs for static analysis violations. In Proceedings of
the 27th ACM Joint Meeting on the Foundations of Software Engineering. 613–624.

[4] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of the
10th Joint Meeting on the Foundations of Software Engineering. 179–190.

[5] Andrew Bragdon, Steven P Reiss, Robert Zeleznik, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J LaVi-
ola Jr. 2010. Code bubbles: rethinking the user interface paradigm of integrated
development environments. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. 455–464.

[6] Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbo-
gen. 2013. Reversible debugging software. Judge Bus. School, Univ. Cambridge,
Cambridge, UK, Tech. Rep 229 (2013).

[7] Hadeel Eladawy, Claire Le Goues, and Yuriy Brun. 2024. Automated Program
Repair, What Is It Good For? Not Absolutely Nothing!. In 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE). IEEE Computer Society,
868–868.

[8] Xiang Gao, Bo Wang, Gregory J Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roy-
choudhury. 2021. Beyond tests: Program vulnerability repair via crash constraint
extraction. ACM Transactions on Software Engineering and Methodology (TOSEM)
30, 2 (2021), 1–27.

[9] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65.

[10] Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and
Yuqing Zhang. 2023. An empirical study on fine-tuning large language models
of code for automated program repair. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 1162–1174.

[11] Kai Huang, Zhengzi Xu, Su Yang, Hongyu Sun, Xuejun Li, Zheng Yan, and Yuqing
Zhang. 2023. A survey on automated program repair techniques. arXiv preprint
arXiv:2303.18184 (2023).

[12] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of ACM 27th SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA). ACM, 298–309.

[13] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code
language models on automated program repair. arXiv preprint arXiv:2302.05020
(2023).

[14] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-aware neural
machine translation for automatic program repair. In Proceedings of IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE/ACM, 1161–
1173.

[15] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of ACM 23rd SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). ACM, 437–440.

[16] Sungmin Kang and Shin Yoo. 2022. Language models can prioritize patches for
practical program patching. In Proceedings of the Third International Workshop
on Automated Program Repair. 8–15.

[17] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 35th
International Conference on Software Engineering (ICSE). IEEE, 802–811.

[18] Amy J Ko and Brad A Myers. 2008. Debugging reinvented: asking and answering
why and why not questions about program behavior. In Proceedings of the 30th
international conference on Software engineering. 301–310.

[19] Pavneet Singh Kochhar, Tegawendé F Bissyandé, David Lo, and Lingxiao Jiang.
2013. An empirical study of adoption of software testing in open source projects.
In Proceedings of 13th International Conference on Quality Software. 103–112.

[20] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim,MartinMonperrus,
Jacques Klein, and Yves Le Traon. 2019. iFixR: Bug report driven program repair.
In Proceedings of the 27th ACM Joint Meeting on the Foundations of Software
Engineering. 314–325.

[21] Xuan-Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Over-
fitting in semantics-based automated program repair. In Proceedings of the 40th
international conference on software engineering. 163–163.

[22] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011.
GenProg: A generic method for automatic software repair. IEEE Transactions on
Software Engineering (TSE) 38, 1 (2011), 54–72.

[23] Yi Li, Shaohua Wang, and Tien N Nguyen. 2022. DEAR: A novel deep learning-
based approach for automated program repair. In Proceedings of IEEE/ACM 44th

International Conference on Software Engineering (ICSE). IEEE/ACM, 25–27.
[24] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar:

Revisiting template-based automated program repair. In Proceedings of ACM 28th
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM,
31–42.

[25] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020.
On the efficiency of test suite based program repair. In Proceedings of International
Conference on Software Engineering. 615–627.

[26] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scal-
able multiline program patch synthesis via symbolic analysis. In Proceedings
of IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE/ACM, 691–701.

[27] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2022.
Improving fault localization and program repair with deep semantic features
and transferred knowledge. In Proceedings of the 44th International Conference on
Software Engineering (ICSE). IEEE/ACM, 1169–1180.

[28] Martin Monperrus. 2018. Automatic software repair: A bibliography. ACM
Computing Surveys (CSUR) 51, 1 (2018), 1–24.

[29] Martin Monperrus. 2018. The Living review on automated program repair. Tech-
nical Report hal-01956501. HAL/archives-ouvertes.fr.

[30] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. 2022.
Trust enhancement issues in program repair. In Proceedings of the 44th Interna-
tional Conference on Software Engineering. 2228–2240.

[31] Alexandre Perez, Rui Abreu, and Marcelo d’Amorim. 2017. Prevalence of single-
fault fixes and its impact on fault localization. In 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST). IEEE, 12–22.

[32] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch
plausibility and correctness for generate-and-validate patch generation systems.
In Proceedings of ACM 24th SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA). ACM, 24–36.

[33] Steven P Reiss, Xuan Wei, and Qi Xin. 2023. Quick Repair of Semantic Errors
for Debugging. In 2023 IEEE/ACM International Workshop on Automated Program
Repair (APR). IEEE, 9–10.

[34] Steven P Reiss and Qi Xin. 2022. A Quick Repair Facility for Debugging. arXiv
preprint arXiv:2202.05577 (2022).

[35] Steven P Reiss, Qi Xin, and Jeff Huang. 2018. SEEDE: simultaneous execution
and editing in a development environment. In Proceedings of 33rd IEEE/ACM
International Conference on Automated Software Engineering. 270–281.

[36] RepairTools 2024. Program Repair Tools. https://program-repair.org/tools.html
[37] Seemanta Saha, Ripon k. Saha, and Mukul r. Prasad. 2019. Harnessing evolution

for multi-hunk program repair. In Proceedings of IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE/ACM, 13–24.

[38] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of ACM 10th Joint Meeting on Foundations of Software Engineering (FSE). ACM,
532–543.

[39] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
analysis of the automatic bug fixing performance of chatgpt. arXiv preprint
arXiv:2301.08653 (2023).

[40] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury. 2016.
Anti-patterns in search-based program repair. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
727–738.

[41] Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair
for heap properties. In Proceedings of the 40th International Conference on Software
Engineering. 151–162.

[42] Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. 2023. Copiloting the
Copilots: Fusing Large LanguageModels with Completion Engines for Automated
Program Repair. arXiv preprint arXiv:2309.00608 (2023).

[43] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In Proceed-
ings of IEEE/ACM 40th International Conference on Software Engineering. 1–11.

[44] Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues.
2021. VarFix: Balancing edit expressiveness and search effectiveness in automated
program repair. In Proceedings of ACM 29th Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 354–366.

[45] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023). Association
for Computing Machinery.

[46] Chunqiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing
please: revisiting automated program repair via zero-shot learning. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 959–971.

[47] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint

https://program-repair.org/tools.html

SE 2030, November 2024, Puerto Galinàs (Brazil) Qi Xin, Haojun Wu, Steven P. Reiss, and Jifeng Xuan

arXiv:2304.00385 (2023).
[48] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lame-

las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2016.
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering 43, 1 (2016), 34–55.

[49] Jun Yang, Yuehan Wang, Yiling Lou, Ming Wen, and Lingming Zhang. 2022.
Attention: Not just another dataset for patch-correctness checking. arXiv preprint
arXiv:2207.06590 (2022).

[50] He Ye and Martin Monperrus. 2023. ITER: Iterative Neural Repair for Multi-
Location Patches. arXiv preprint arXiv:2304.12015 (2023).

[51] Yuan Yuan and Wolfgang Banzhaf. 2020. Toward better evolutionary program
repair: An integrated approach. ACM Transactions on Software Engineering and
Methodology (TOSEM) 29, 1 (2020), 1–53.

[52] Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen.
2023. A Survey of Learning-based Automated Program Repair. arXiv preprint

arXiv:2301.03270 (2023).
[53] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In

Proceedings of IEEE/ACM 37th International Conference on Software Engineering
(ICSE), Vol. 1. IEEE/ACM, 913–923.

[54] Wenkang Zhong, Chuanyi Li, Kui Liu, Tongtong Xu, Tegawendé F Bissyandé,
JidongGe, Bin Luo, andVincent Ng. 2023. Practical ProgramRepair via Preference-
based Ensemble Strategy. arXiv preprint arXiv:2309.08211 (to appear in ICSE’24)
(2023).

[55] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.
In Proceedings of ACM 29th Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 341–353.

	Abstract
	1 Motivation
	2 An Envisioned Repair System for 2030
	3 Ongoing and Future Work
	3.1 Interactive Test-Free Repair Framework
	3.2 LLM-Based Local Repair
	3.3 Global Repair Driven by Tailored Strategies

	References

