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ABSTRACT

To provide their functionality, mobile apps interact extensively

with the application programming interface (API) of the underly-

ing operating system. Given that this API evolves frequently, app

developers are periodically required to migrate API usages in their

apps to ensure that the apps behave as expected when running on

the new API. To help developers with this tedious, error-prone, and

time-consuming task, we defined a technique for automated API

migration and implemented it in a tool called APIMigrator that

supports Android apps. APIMigrator (1) automatically migrates

API usages within an app by leveraging how developers of other

apps migrated corresponding API usages and (2) validates the mi-

grations through differential testing. We evaluated APIMigrator

on a benchmark of 15 real-world apps and obtained promising re-

sults. Overall, our tool was able to migrate 85% of the API usages

considered and validate 68% of these migrations. We provide a demo

video of the tool at https://youtu.be/v0VfpKi_IDc.
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1 INTRODUCTION

To build mobile apps, developers rely heavily on the application

programming interface (API) provided by the underlying operating

system (OS). This API allows developers to build feature-rich apps

without worrying about complex and low-level implementation

details encapsulated in the OS.

To provide important improvements and new functionality, APIs

change over time. The API of the Android OS is an egregious case

∗This demo illustrates the implementation of a technique presented at ISSTA 2019 [3].
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of this phenomenon, as it has evolved at an average rate of 115

API changes per month [17]. Considering that methods in newer

versions of the API are routinely deprecated, eliminated, added, and

changed, Android developers must regularly migrate their apps to

the newer API to take advantage of new functionality and ensure

that their apps behave as expected on the new API. Additionally,

due to the extensive fragmentation of the Android ecosystem [8, 14],

developers must also perform backward-compatible migrations, so

that their apps can adequately function also on older APIs.

Although API changes are usually reported in the API documen-

tation, in a great majority of cases the documentation does not

provide relevant examples on how to perform required migrations,

and developers must understand how to do so on their own [12].

Additionally, given the extensive use of the API within apps, the

required changes can be widespread. As a result, the task of migrat-

ing apps to support the new version of the API is typically tedious,

time-consuming, and error-prone [12, 15].

To address this challenging maintenance task, we devised a tech-

nique [3] that migrates API usages in an app (i.e., calls to the API),

and implemented the technique in a tool called APIMigrator that

supports Android apps. In this demo paper, we summarize the tech-

nique and present APIMigrator. The high-level intuition behind

our technique is that it is possible to automatically migrate API

usages by leveraging the information contained in the codebase of

other apps. Our technique takes as inputs a target app and summary

information about the changes in the API (i.e., a mapping describing

the changes in the calls to the API, which can be extracted from the

API documentation). Given these inputs, the techniquefi nds the

API usages that require migration, searches for corresponding mi-

gration examples, transforms the examples into generic migration

patches, uses the patches to migrate the target app, and validates

the migrations through differential testing. The outputs of the tech-

nique are the evolved target app and a report documenting the

migrations performed.

Although other techniques and tools that perform migrations

based on examples exist (e.g., [1, 18, 20]), they mostly target repeti-

tive changes within the same codebase or require examples to be

provided as inputs. Our technique differs from these approaches

as it automatically identifies examples across different codebases,

prioritizes the examples by comparing them, and uses differential

testing to perform a sanity check and provide more confidence in

the migrations performed.

To assess the usefulness of APIMigrator, we performed an

empirical evaluation on a benchmark of 15 real-world apps that

contain 20 API usages occurring at 41 different locations. We be-

lieve our results are promising: APIMigrator successfully migrated

85% of the API usages considered and validated 68% of the migra-

tions. APIMigrator is publicly available at https://doi.org/10.5281/

zenodo.3668385.
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Figure 1: High-level overview of APIMigrator.

2 TERMINOLOGY

Before describing the technique and APIMigrator, we introduce

some necessary terminology. Given two consecutive API versions,

old API = [m1, ..., mk] and new API = [m′
1, ..., m

′
l
], we define an API

usage as any call of one or more methods of either the old or the

new API versions. Intuitively, an API-usage change (AU change)

between the old and the new versions of the API can typically be

described as an API-usage change mapping (AU cm) between one

or more methods in the old version and one or more methods in

the new version: [m1, ..., mp] → [m′
1, ..., m

′
q].

To illustrate, we present an example of an AU change taken

from the Android API [6]. In this example, method getAllNetwork

Info() was deprecated in version 23 of the API in favor of the two

new methods getAllNetworks() and getNetworkInfo(Network). The

corresponding AU cm would be from method getAllNetworkInfo()

to methods getAllNetworks() and getNetworkInfo(Network).

Given an AU change, we define an old API usage (resp., new API

usage) for that AU change as a sequence of one or more method

invocations that match the left-hand side (resp., right hand side) of

the AU cm. Considering an app and an AU change, we use the term

migration to indicate the operation of migrating an old API usage

in the app to a new API usage. Finally, we use the term migration

example to refer to existing migrations (e.g., in an app code base).

3 TECHNIQUE OVERVIEW

In this section, we summarize our technique. Full details can be

found in [3]. Figure 1 provides a high-level overview of our tech-

nique. As shown in thefi gure, the approach takes as inputs a target

app and a specification of the AU changes, where the latter consists

of a set of AU changes. Given these inputs, the technique operates

in four phases and generates as outputs (i) an evolved target app

and (ii) an API-usage migration report that describes the changes

in the app. We now summarize the four phases of the approach.

API-Usage Analysis. Given the target app and the specifica-

tion of the AU changes, thefi rst phase of the technique statically

analyzes the source code of the app to identify API usages that

should be changed and stores this information in the API-usage

report. Specifically, the approach (i) identifies old API usages in the

app, (ii) checks whether the corresponding API calls can execute on

the new version of the API, and (iii), if so, stores the information of

the API usages and the location of their API calls in the API-usage

report, as these API usages require migration.

Migration Example Search. After identifying which API us-

ages require migration, the approach tries tofi nd migration exam-

ples by analyzing how other developers migrated corresponding

API usages in their apps. To this end, the technique analyzes various

app repositories (repos, in short) that are publicly available in a

code-hosting infrastructure (e.g., GitHub [5]).

For each API usage that requires migration, the approach quickly

searches for code bases that could contain migration examples by

performing a textual search in thefi les that are present in the code-

hosting infrastructure considered. The search is based on a set of

keywords extracted from the new API usage. Specifically, these

keywords are (i) the name, (ii) the parameter types, and (iii) the

declaring class of each API call in the new API usage.

At this point, the technique considers the history of eachfile

(returned by the search) in the corresponding repo to identify migra-

tion examples. Specifically, the approach compares each version of

thefi le (new version) with its previous version (old version) tofind

a method in the code of the app that performed a migration from

the old API usage to the new API usage. The technique analyzes

the differences between the twofi les and uses this information to

search for a method that (i) does not contain the new API usage in

the old version, (ii) uses the old API usage in the old version, (iii)

uses the new and the old API usages in the new version. Further-

more, the new and old API usages must be in different branches of a

condition that checks the API version on which the app is executing.

This latter check allows for identifying only backward-compatible

migrations. Note that, although the technique tries tofi nd multiple

migration examples to produce a more general solution, it can be

applied also when a single example is found.

Migration Examples Analysis. In this phase, the approach

generalizes migration examples into generic migration patches that

can be used to migrate the target app. When more than one patch

is available for the same AU change, the technique also prioritizes

the patches based on how closely related they are to the "common

core" shared across examples. In this way, the approach is able to

favor patches that best capture the essence of the migration.

a) Generic Migration Patch Generation. For each migration exam-

ple, the technique considers the method containing the migration

and initiates the generalization task by identifying a list of edit oper-

ations that transforms the API usages in the old version of the code

(old method) to the API usages in the new version of the code (new

method). Specifically, the technique leverages an approach [4, 18]

that generates an ordered list of tree operations (i.e., Delete, Insert,

Move, and Update) for transforming the statements in the abstract

syntax tree (AST) of the old method into the AST statements of

the new method. Because developers of other apps might include,

between two versions, additional modifications unrelated to the AU

change, the technique performs an intra-procedural dependency

analysis to select only the relevant edits.
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The edits extracted so far are dependent on the specific example

from which they were computed. To use these edits for migrating

the methods of the target app, the technique transforms the edits

into generic edits and identifies the context in which the edits can

be used. A generic edit consists of three parts: (i) the original edit,

(ii) the position in the AST of the statement affected by the edit, and

(iii) the abstraction of the statement affected by the edit, where the

abstraction is the statement itself with variables replaced by their

type. The context of the edits is defined by context variables, that

is, variables that are used by the statements affected by the edits

and are not defined in any of the statements. These variables are

computed through dependency analysis. Generic edits and context

variables define the content of a generic migration patch.

b) Generic Migration Patch Prioritization. After translating migra-

tion examples into generic migration patches, the approach groups

patches according to the AU change they address and prioritizes

them based on how closely related they are to the common core

of edits shared across patches of the same group. The approach

determines the core byfi nding a solution to the multiple longest

common subsequence problem instantiated over the list of edit

abstractions of each patch and ranking higher examples that have

more edits in the core. Thefi nal output of this part of the technique

is the list of patches, one for each API usage that requires migration.

API-UsageMigration. This phase of the technique (i) leverages

the generic migration patches to migrate the old API usages at

the locations reported by thefi rst phase of the approach and (ii)

validates the migrations through differential testing. The technique

performs one API-usage migration task at a time to avoid validation

issues caused by migrations that interfere with each other. If two or

more API-usages share dependencies, they are considered together.

For each code location l (and corresponding method m) that

requires migration, the approach starts from the patch at the top of

the list (i.e., the patch closest to themigration core). It then considers

(in order) other patches if the current one cannot be applied in l .
A patch is applicable in l when (i) it is possible to map the context

variables of the patch to the variables inm, and (ii) generic edits can

be applied (in their entirety) to the AST ofm. To apply a patch, the

technique iterates over the statements inm and tries to identify a

mapping between the context variables and the variables in scope at

the considered statement (by solving an instance of the assignment

problem). If itfi nds a mapping, the approach tries to perform the

edit operations associated with the generic edits to the AST of

m. If all the operations can be applied successfully, the approach

validates the migrated method through differential testing (either

leveraging an existing test suite or building a new one through

random input generation).

After processing all the locations that require migration, this

phase produces as thefi nal output of the technique an evolved

target app and an API-usage migration report, where the technique

documents validated and applicable migrations.

4 TOOL DESCRIPTION

We implemented our technique in a tool, called APIMigrator,

written in Python and Java. We developed and tested APIMigrator

on a machine running Ubuntu 16.04 and created a virtual machine

containing the tool, which can be downloaded at https://doi.org/

10.5281/zenodo.3668385. In the video demo associated with this

paper, we show how to use APIMigrator to perform an API-usage

migration task using the virtual machine.

The tool has three main modules: the analysis module, the search

module, and the migration module. These three modules imple-

ment the capabilities described in the API-usage analysis phase,

the migration-examples-search phase, and the migration-examples-

analysis and API-usage migration phases of the technique, respec-

tively. We created a single module for the last two phases to avoid

serializing and de-serializing a large number of in-memory data

structures. We now describe each module in more detail.

Analysis Module. This module identifies API-usages that re-

quiremigration in the target app and is built on top of IctApiFinder [8].

It computes the versions onwhich each statement can execute using

Soot [11] and Doop [22]. APIMigrator also uses Soot to identify

API-usages that require migration.

Search Module. This module searches for migration examples

on GitHub [5]. The module uses the GitHub API to perform its

keyword-based search, which identifies source codefi les from app

repos that may contain migration examples. This part of the module

uses Python to invoke the API. After performing the keyword-based

search, the module analyzes the source codefi les retrieved by the

search by downloading the corresponding repos locally. Themodule

uses the type solver from JavaParser [10] to recognize the signature

of the method calls characterizing API usages in codefiles.

MigrationModule. This module analyzes the source code of the

migration examples to extract and apply generic migration patches.

Themodule takes as inputs the sourcefi les from the app repos, in the

form of Eclipse projects, and uses the Eclipse JDT API to build and

analyze the AST of the methods considered. The module leverages

the LASE [19] infrastructure to encode AST nodes into statements

and extract edits from a pair of ASTs. Furthermore, APIMigrator

leverages the Crystal [9] framework to perform dependency anal-

ysis on the statements in the ASTs. Finally, APIMigrator uses

Monkey [7] to create tests for validating migrations automatically,

in case a test suite is not available.

5 EVALUATION

In this section, we summarize the evaluation of APIMigrator (for

additional details, see [3]). To evaluate APIMigrator, we measured

(i) the percentage of migrations it can perform on a set of benchmark

apps and (ii) the cost of running the tool. We used 15 real-world

apps from the F-Droid repository [2] as benchmarks. Specifically,

we used three sets offi ve apps with two characteristics. First, the

three sets contain apps designed for three different versions of the

API. For each API version, we manually generated the API-usage

change specification by studying the corresponding API documents.

Note that generating the specification took us less than an hour.

Moreover, these specifications must be computed only once for

each new API version and can be shared across developers. Second,

using the generated API-usage change specification, we made sure

that each app contained at least one API usage that (i) was different

from those in the other apps and (ii) had to be migrated in the

subsequent API version. Overall, the 15 apps considered contain

20 different API usages requiring migration, and these API usages

occur 41 times in the apps.
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Results: APIMigrator was able to migrate 17 (85%) of the 20

API usages and 37 (90%) of their 41 occurrences. Furthermore, out

of the 37 migration it performed, APIMigrator automatically val-

idated 25 (68%) of them. We manually analyzed all of the 37 mi-

grations and confirmed that they were correct, according to the

changes described in the corresponding API documents. APIMi-

grator was not able to migrate one of the 20 API usages (one

occurrence) because it could notfi nd migration examples, and two

of the 20 API usages (three occurrences) because the migration

examples had edits spanning multiple methods (APIMigrator cur-

rently considers only edits fully contained in a single method).

(In [3], we also show APIMigrator’s effectiveness over LASE [19].)

In the evaluation, the running time of APIMigrator was domi-

nated by the Migration Examples Search phase (about 10 hours on

average, whereas all other phases took less than one minute, on

average). Note that, even if the search phase takes a few hours to

complete, (i) it can be performed overnight, (ii) must be run only

once per version release, (iii) its results can be shared across de-

velopers. Moreover, the search can be further improved via offline

repository indexing and can be run in parallel.

6 RELATEDWORK

APIMigrator primarily relates to example-based program trans-

formation techniques (e.g., [1, 13, 16, 18, 20, 21, 23]). APIMigrator

differs from some of these techniques [1, 16, 18, 20, 21] in that it uses

a more general approach to identify when amigration patch is appli-

cable. This makes our tool effective in using examples from different

codebases. As opposed to A4 [13], APIMigrator identifies migra-

tion examples in remote repositories, handles changes in return

values, and is able to prioritize migration examples. Finally, unlike

Meditor [23], APIMigrator can analyze and compare multiple

examples while performing migrations, allowing for prioritizing

and using migration patches that are closer to the essence of the

required changes. Additionally, our tool also performs differential

testing to validate the migrations performed.

7 CONCLUSION

We presented APIMigrator, a tool for automatically migrating

API-usages in Android apps. APIMigrator identifies migration

examples from publicly available codebases, analyzes the examples

to generate and rankmigration patches, and validates the performed

migrations through differential testing. We used APIMigrator to

migrate the API usages in a benchmark of 15 real-world apps. The

tool was able to migrate 85% of the API usages considered and

automatically validated 68% of these migrations. In future work, we

plan to extend APIMigrator’s evaluation and investigate how to

support migrations across method boundaries.We also plan to study

ways to compute API-usage change specifications automatically,

using the version control history of the API and its documentation.

Finally, we plan to investigate ways to extend our technique so that

it can handle API migrations in more general settings (i.e., for other

languages and libraries).
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