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Abstract—Understanding a program and the features it pro-
vides is essential for a number of software engineering tasks,
including refactoring, debugging, and debloating. Unfortunately,
program understanding and feature identification are also ex-
tremely challenging and time consuming activities. To support
developers when they perform these activities, we propose
FEATUREFINDER, an approach that aims to identify and un-
derstand the features of a program by analyzing its executions.
Specifically, we defined our approach for Android apps, given
their widespread use. Given an app, FEATUREFINDER generates
traces that capture different properties of the app executions
through instrumentation. It then leverages the user events in
the trace to split the trace into segments, and clusters these
segments based on their characteristics, using a classifier. Each
identified cluster indicates a feature exercised in the execution.
Finally, FEATUREFINDER suitably labels each identified cluster,
so as to provide a human-readable description of the corre-
sponding feature. We performed a case study in which we used
FEATUREFINDER to identify features in two executions of the K-
9 MAIL app. In the study, FEATUREFINDER was able to correctly
identify 6 of the 11 manually identified features, which we believe
is an encouraging result and motivates further research.

Index Terms—Feature identification, program understanding,
trace analysis

I. INTRODUCTION

Whether developers need to debug, refactor, maintain, or
generate documentation for a program, it is essential that
they understand the program and the features it provides. In
this paper, in particular, we are interested in the problem of
identifying and understanding the features of a program by
analyzing its executions. There are a number of existing ap-
proaches that instrument a program, generate execution traces
that contain useful information, and analyze the generated
traces [1]. To allow developers to know what exactly happened
within an execution, however, these traces typically contain a
great deal of low-level information (e.g., methods called and
user events). Unfortunately, analyzing and understanding this
kind of low-level traces is a time-consuming and complex task.

To help developers with this task, and let them better
understand program executions and the features exercised
therein, we propose a new technique called FEATUREFINDER.
FEATUREFINDER is specifically designed to target Android
apps, as they are increasingly widespread and have specific
characteristics that can be leveraged when analyzing their
executions. In particular, mobile apps (and Android apps in
particular) are event-based and organize their features around
the concepts of screens (activities) and user events.

In our context, a feature is a sequence of user events
that exercise some functionality of an app. For example, the
login feature of an app may consist of the following user
events: clicking on the username input text box, typing a
username, clicking on the password input text box, typing
a password, and clicking on the login button. To identify
these so-defined features for an app A, FEATUREFINDER
instruments A so that, when executed, A generates a trace
that contains specific runtime information. Then, for each
generated trace, FEATUREFINDER identifies the user events in
the trace and splits the trace into segments separated by user
events. At this point, FEATUREFINDER uses a clustering al-
gorithm to group consecutive trace segments iteratively, based
on the runtime information associated with the segments. At
the end of this step, each cluster represents an identified
feature. FEATUREFINDER also generates a human-readable
label for each cluster (i.e., feature) and outputs clusters and
corresponding labels.

To evaluate FEATUREFINDER, we implemented it in a
prototype tool and performed a case study in which we used
the tool to identify the features in two execution traces of
the K-9 MAIL app. In the study, FEATUREFINDER was able
to correctly identify 55% of the features manually identified
in the traces considered. These results, albeit preliminary, are
promising and show that FEATUREFINDER is a potentially
effective technique for identifying features in app executions.
Moreover, although the current definition of FEATUREFINDER
is Android-specific, the basic approach should be easily appli-
cable to other GUI-based applications (e.g., web applications).

This paper makes the following contributions:
• An approach for identifying features of an app by ana-

lyzing its execution traces.
• An implementation of the approach for the Android

platform (publicly available at https://sites.google.com/
view/featureidentification).

• A case study that shows the potential usefulness of our
approach.

II. APPROACH

In this section, we present FEATUREFINDER, an approach
for extracting features from execution traces. Figure 1 provides
a high-level overview of FEATUREFINDER. As the figure
shows, the approach takes as input an app and operates in
five steps: instrumentation, execution, splitting, clustering,
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Fig. 1. High-level overview of FEATUREFINDER.

and labeling. The output of the approach are the features
exercised by a user execution of the app. We now elaborate
on FEATUREFINDER’s steps.

A. Instrumentation and Execution
In the instrumentation step, FEATUREFINDER instruments

the app to capture certain execution properties. This infor-
mation is stored in an execution trace and is used in later
steps to identify the set of features exercised during execution.
Figure 2 illustrates, in the form of a grammar, the traces
generated by FEATUREFINDER. The approach captures several
execution properties: call stack at each method call, activities
and fragments traversed,1 and user events. We chose these
properties as we believe they capture essential information
about a user execution and the features it exercises.

Specifically, FEATUREFINDER captures call stacks (MC-
Stack) to identify method calls (MCall) and their depth. For
each method call, the approach extracts package (Package-
Name), class (ClassName), and method (MethodName) names
associated with the call. It also records the names of the ac-
tivities (ActName) and fragments (FragName) explored during
the execution. For each activity/fragment, FEATUREFINDER
records starting point (ActStart/FragStart) and ending point
(ActEnd/FragEnd). FEATUREFINDER also records user events
(UserEvent), where a user event can be either a touch event
(TouchEvent) or a keyboard event (KeyBoardEvent). A touch
event is associated with a widget (Widget) (e.g., a button), for
which FEATUREFINDER records, if available, id (WidgetId),
associated text (WidgetText), and content description (Widget-
ContentDesc). A keyboard event is associated with a key label
(KeyLabel).

In the execution step, FEATUREFINDER uses the instrumen-
tation to produce a trace that captures the execution properties
observed while a user is interacting with the app.

B. Splitting and Clustering
FEATUREFINDER uses a bottom-up approach to identify

features within a trace. Intuitively, the approach recognizes

1In Android apps, activities and fragments are basically screens of the app.

Tr -> E Tr | epsilon
E -> { MCStack } | ActStart | FragStart | ActEnd | FragEnd

| UserEvent
MCStack -> MCall MCStack | epsilon
MCall -> ( PackageName ClassName MethodName )
ActStart -> ActName *as*
FragStart -> FragName *fs*
ActEnd -> ActName *ae*
FragEnd -> FragName *fe*
UserEvent -> < *tevent* Widget > | < *kbevent* KeyLabel >
Widget -> WidgetId WidgetText WidgetContentDesc

Fig. 2. Trace grammar.

features by grouping parts of the trace together. More pre-
cisely, FEATUREFINDER recognizes features in its splitting
and clustering steps.

In the splitting step, the approach divides the trace into seg-
ments based on the occurrence of touch events. We use these
events to determine segments because we believe that features
are usually invoked through an explicit action performed by
the user (e.g., clicking on the login button).

After this step, the clustering step groups consecutive
segments that are deemed to be related. We use the term
cluster to refer to a group of segments. The algorithm
that FEATUREFINDER uses to cluster segments is shown in
Algorithm 1. The algorithm follows a “snowball-growing”
principle; that is, it keeps grouping the current segment with
the subsequent one if the classifier directs it to merge (i.e., to
grow the “snowball”). Specifically, the algorithm starts with an
initialization step (lines #1–3) and then keeps iterating over the
segments in the trace (lines #4–14). Each iteration identifies
one cluster. At line #5, the algorithm creates a new cluster,
which contains the first available segment. It then processes
subsequent segments (lines #6–11) and tries to merge these
segments into the current cluster using the classifier. The
algorithm stops grouping segments when either the classifier
(described below) returns a don’t merge as an answer or the
trace has been fully processed. The list of computed clusters
is the output of the algorithm, where each cluster indicates a
feature in the app.

The classifier used by FEATUREFINDER determines whether
two segments should be clustered based on the execution
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Algorithm 1 Clustering algorithm.
Input: uts: list of segments

classifier: classifier to group segments
Output: clusters: list of grouped segments
1: clusters ← {}
2: int ut size ← uts.size()
3: int i ← 0
4: while true do
5: int begin ← i
6: for i ← begin + 1; i < ut size; i + + do
7: segment0 ← MERGE(uts, begin, i − 1)
8: segment1 ← uts.get(i)
9: label ← classifier.classify(segment0, segment1)

10: if label ==“don’t merge” then
11: break
12: clusters.add(MERGE(uts, begin, i − 1))
13: if i == ut size then
14: break
15: return clusters

properties contained within the segments. To do so, the
classifier uses a feature vector that contains the 29 numeric
features shown in Table I, which encode how two segments
relate to each other. (We identified these features based on
our expertise and preliminary evaluation. In future work, we
plan to investigate how individual features contribute to the
classification accuracy and to possibly consider additional
features.) Given the feature vector for a pair of segments,
the classifier predicts whether the segments should be merged
(“merge”) or not (“don’t merge”).

C. Labeling

In this step, FEATUREFINDER associates to each identified
cluster C a label that is meant to provide a human-readable
description of the feature represented by C. To compute the
label for C, the approach first collects the names of the
activities and fragments present in C. It then (1) treats these
names as terms, (2) computes the tf-idf value for each term
considering C as a document, (3) ranks the terms based on the
computed values, and associates the set of the top-10 terms to
C as its label. The output of the technique is the set of labeled
clusters, where each cluster represents a feature in the trace.

III. CASE STUDY

To evaluate FEATUREFINDER, we conducted a case study
on five randomly selected open-source apps that belong to
different categories: K-9 MAIL [4], WORDPRESS [5], DAILY-
MONEY [6], PASSWORDMAKER [7], and MUSIC PLAYER [8].
We first instrumented the apps using FEATUREFINDER. Then,
for each app, we (1) created two usage scenarios that exercised
different features of the app and (2) obtained two traces by
realizing the scenarios while running the app. Table II shows
the resulting traces, which contain 60.6 user events on average.

We randomly selected to use K-9 MAIL’s traces for testing,
and the eight traces of the remaining apps for training. For
each of these eight traces, we used FEATUREFINDER to split
the trace into segments. One of the authors then manually iden-
tified clusters for each trace by determining which segments
corresponded to a feature and should have been clustered.
Based on the identified clusters, we then labeled each pair
of feature vectors for contiguous trace segments as either
“merge” or “don’t merge”, based on whether the segments

belonged to a manually identified cluster. Using this approach,
we generated a total of 490 labeled pairs of trace segments and
corresponding feature vectors. We used these pairs to train,
using 10-fold cross-validation, 10 commonly used classifiers
available in the Weka package [9], including classifiers based
on decision trees, logistic regression, SVM, and k-NNs. As
the results in Table III show, these classifiers can achieve high
accuracy (0.84 on average).

Based on these results, we implemented a prototype of
FEATUREFINDER using IBk(10), which has the highest ac-
curacy among the classifiers considered. We then used our
prototype on the two traces of K-9 MAIL, using the manually
identified clusters as ground truth. (To mitigate the risk of bias,
an additional author inspected and agreed on the manually
identified clusters.) Table IV shows the clusters we manually
identified (ground truth) and the labels that we created to
indicate the corresponding features. The table also shows the
clusters and labels computed by FEATUREFINDER. Due to
space limitations, we do not show the user events, which are
available elsewhere [10].

As shown in Table IV, FEATUREFINDER identified six
features for Trace 0 (TID=0), among which four match the
ground truth: (ft01, fh01), (ft02, fh02), (ft05, fh05), and (ft06,
fh06). (Note that some starting and ending segment ids do
not match exactly due to noise in the traces, such as a touch
event on the back button.) For feature fh04 (Adding account),
FEATUREFINDER identified two features: ft03 (which corre-
sponds to providing an email address and a password to login)
and ft04 (which corresponds to setting a name for the new
account). As for fh03 (Email setting), which involves adding
stars for two emails, FEATUREFINDER grouped it with the
login part of adding an account (ft03), most likely due to non-
significant changes with respect to the activities, fragments,
and method calls in the corresponding cluster.

For Trace 1 (TID=1), FEATUREFINDER identified three
features, among which two match the ground truth: (ft11,
fh11) and (ft13, fh15). (Also in this case, segment ids do
not match exactly in some cases, for the same reasons men-
tioned above.) Feature ft12 groups together three ground-truth
features: fh12, fh13, and fh14, which correspond to email
composing, email search, and invoking the “About” menu
entry. In this case, the recorded execution properties were not
enough for FEATUREFINDER to split the sequences correctly.
Overall the differences between sequences are not considered
as significant by the classifier due to the presence of activities
that are present in a significant number of segments (e.g.,
MessageList and SettingsActivity).

For the six features that FEATUREFINDER correctly identi-
fied, we believe that the labels computed by FEATUREFINDER
effectively capture the essence of the features. For three of the
features (ft02, ft06, and ft13) the labels contain words present
in the ground-truth labels (e.g., folder), and all the labels are
close in meaning to the ground-truth labels.

Overall, FEATUREFINDER correctly identified 55% of the
features in the traces considered (4/6 for Trace 0 and 2/5
for Trace 1). These features provide a high-level summary

Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:10:55 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
FEATURES USED TO COMPARE TWO TRACE SEGMENTS.

ID Name Description
VF0 size 0, if both small; 1, if one small and one large; 2, if both large.�

VF1 clustering 0, if both are individual segments; 1, if one of the segments is a cluster.
VF2 activity usage Jaccard similarity of the activities in the two segments, treated as sets.
VF3 fragment usage Jaccard similarity of the fragments in the two segments, treated as sets.
VF4 widget usage Jaccard similarity of the widget information in the two segments, treated as sets.
VF5-VF12† package words Similarity of the words‡ contained in the package names occurring in the two segments.
VF13-VF20† class words Similarity of the words‡ contained in the class names occurring in the two segments.
VF21-VF28† method words Similarity of the words‡ contained in the method names occurring in the two segments.

� A segment is considered small if it contains less than three method calls, large otherwise.
† FEATUREFINDER computes the cosine similarity of eight pairs of vectors, where FEATUREFINDER generates the first (resp., second) vector in each pair based on the words
contained in the first (resp., second) segment, and eight combinations are obtained by (1) populating the vectors with either tf or tf-idf values for the words [2], while (2) treating
the words as either sets (i.e., without repetitions) or bags (i.e., with repetitions), and (3) considering either plain words or words augmented with their depth.
‡ To extract words, FEATUREFINDER (1) splits names into tokens (e.g., based on camel case), (2) performs stemming [3], (3) eliminates Java keywords, stop words, and tokens
whose length is less than 3 or greater than 32, and (4) makes the remaining tokens lower case.

TABLE II
TRACES USED FOR TRAINING AND FOR TESTING.

TID App Category #MethodCall #Segment #Vector‡
0 WORDPRESS Productivity 16,743 74 73
1 WORDPRESS Productivity 22,000 63 62
2 DAILY-MONEY Finance 12,080 92 91
3 DAILY-MONEY Finance 19,108 84 83
4 PASSWORDMAKER Tools 2,080 23 22
5 PASSWORDMAKER Tools 2,434 34 33
6 MUSIC PLAYER Media 32,365 57 56
7 MUSIC PLAYER Media 36,258 71 70

0 K-9 MAIL Communication 23,675 58 n/a
1 K-9 MAIL Communication 48,129 50 n/a

‡ Number of feature vectors used for the training of the classifier.

TABLE III
ACCURACY OF THE CLASSIFIERS CONSIDERED.

Weka Classifier Accuracy Classifier Description
J48 0.83 A decision tree classifier
PART 0.82 A decision list classifier
DecisionTable 0.84 A simple decision table majority classifier
Logistic 0.83 A multinomial logistic regression model
SMO 0.85 A support vector classifier
IBk(1) 0.83 A k-NN classifier (with k=1)
IBk(2) 0.86 A K-NN classifier (with k=2)
IBk(3) 0.83 A K-NN classifier (with k=3)
IBk(5) 0.83 A K-NN classifier (with k=5)
IBk(10) 0.86 A K-NN classifier (with k=10)

of the execution trace and can help the developer understand
the corresponding execution. FEATUREFINDER also reported
some incorrect features, however, which may mislead the
developer. To mitigate this issue, in the future, we plan
to provide better guidance to the developer by associating
confidence values to the identified features.

IV. RELATED WORK

Our technique is related to techniques that do trace analysis
for program understanding. These techniques use different ap-
proaches, such as trace reduction and compression [11], [12],
summarization [13], segmentation [14], pattern mining [15],
and visualization [16], [17]. In particular, FEATUREFINDER is
most closely related to techniques that do trace segmentation
to identify execution phases, such as those that consider simi-
larity among method calls [18], [19], deltas in call-stack depth
[14], method call frequency [20], object creation and deletion
[21], [22], and program structure [23]. FEATUREFINDER dif-
fers from these techniques in that it uses a classifier-based
algorithm in identifying and clustering related user events
for feature identification. Our technique is also related to,
albeit different from, techniques for feature location (e.g.,

TABLE IV
FEATURES IDENTIFIED FOR K-9 MAIL.

TID Tool/Human Features
IDs Labeled Clusters ([sid,eid]:label0,label1)‡

0

FEATURE
FINDER

ft01 [0,16]:MessageList,MessageListFragment
ft02 [17,25]:FolderSettings,FolderList
ft03 [26,35]:SettingsActivity,AccountSetupBasics
ft04 [36,39]:AccountSetupNames,AccountSetupCheckSettings
ft05 [40,44]:MessageViewFragment,MessageList
ft06 [45,49]:MessageCompose,MessageList

Ground
truth

fh01 [0,15]:Email checking
fh02 [16,26]:Managing folders
fh03 [27,30]:Email setting
fh04 [31,39]:Adding account
fh05 [40,43]:Email checking
fh06 [44,49]:Email composing

1

FEATURE
FINDER

ft11 [0,25]:MessageList,MessageListFragment
ft12 [26,42]:AboutActivity,MessageCompose
ft13 [43,57]:GeneralSettingsFragment,GeneralSettingsActivity

Ground
truth

fh11 [0,24]:Email checking
fh12 [25,30]:Email composing
fh13 [31,35]:Email search
fh14 [36,42]:Getting info
fh15 [43,57]:General settings

‡ Labeled clusters are shown in the form of [sid,eid]:label0,label1, where sid and eid are
the starting and ending ids of the segments, and label0 and label1 are the top-2 terms in
the labels (we only show the top-2 terms due to space limit).

[24]) and techniques that use dynamic analysis for program
understanding (e.g., [1]).

V. CONCLUSION & FUTURE WORK

We presented FEATUREFINDER, which aims to dynam-
ically identify features of Android apps. Given an app,
FEATUREFINDER first instruments it to generate traces that
capture different execution properties. It then splits the trace
into segments and uses a bottom-up approach to cluster
consecutive, related segments, where each cluster indicates a
feature. Finally, it labels each cluster to provide a human-
readable description of the corresponding feature. We also
presented a case study that shows the viability of our approach.

In addition to the future work we described earlier in the pa-
per, we plan to extend FEATUREFINDER so that it can identify
features hierarchically, at different levels of abstraction. We
will also define a visualization for presenting the identified
features to the users. Finally, we plan to extend our evaluation
by including more apps and conducting a user study.
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