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ABSTRACT

Mobile apps rely heavily on the application programming interface

(API) provided by their underlying operating system (OS). Because

OS and API can change frequently, developers must quickly update

their apps to ensure that the apps behave as intended with new

API and OS versions. To help developers with this tedious, error

prone, and time consuming task, we developed a technique that

can automatically perform app updates for API changes based on

examples of how other developers evolved their apps for the same

changes. Given a target app to be updated and information about

the changes in the API, our technique performs four main steps.

First, it analyzes the target app to identify code affected by API

changes. Second, it searches existing code bases for examples of

updates to the new version of the API. Third, it analyzes, ranks,

and transforms into generic patches the update examples found

in the previous step. Finally, it applies the generated patches to

the target app in order of ranking, while performing differential

testing to validate the update. We implemented our technique and

performed an empirical evaluation on 15 real-world apps with

promising results. Overall, our technique was able to update 85%

of the API changes considered and automatically validate 68% of

the updates performed.
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1 INTRODUCTION

Mobile apps are increasingly widespread, and we use them daily

for a range of activities. One common trait of these apps is that

they rely heavily on the underlying operating system (OS), which
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provides a number of fundamental services to the apps through its

application programming interface (API).

Unfortunately, OSs and their APIs get updated frequently [6,

19, 31, 35, 63]. Although OS developers try to maintain backward

compatibility between API versions, API methods are routinely

deprecated, eliminated, added, and changed as OSs evolve. For an

app to keep working with the newest versions of its underlying OS,

the usages of the API within the app must be suitably updated.

Unfortunately, evolving an app to adapt it to changes in the API

is a tedious, error prone, and time consuming task, especially when

the app must work both on the latest OS and on earlier versions of it

(e.g., for fragmented ecosystems [22, 29]). Moreover, although API

changes are usually discussed in the API documentation, in most

cases this documentation does not provide relevant examples of

how to update software that uses the changed API. Developers must

therefore discover how to update their code on their own. Finally,

these updates can be extensive, due to the typically widespread use

of the API within apps.

The intuition behind this work is that evolving an app from an

old to a new version of its underlying API can be automated to a

large degree by leveraging existing code bases; that is, by finding

and analyzing the code of existing apps that already went through

the same update. Based on this intuition, we developed AppEvolve.

AppEvolve takes as inputs (1) a target app A to be updated and

(2) information about the changes in the API between two given

versions V and V + 1. (In this work, we assume that the informa-

tion about the API changes is manually provided by the developer.)

Given these inputs, the technique operates in four main phases.

The API-usage analysis phase analyzes A to identify code that is

affected by the changes in the API and should therefore be modi-

fied. The update examples search phase searches existing code bases

for examples of relevant updates (i.e., updates from version V to

V + 1 that involve usages of the same API methods used in A). The

update examples analysis phase analyzes the identified examples to

generalize the changes therein, transform them into generic code

patches, and rank the resulting patches. Finally, the API-usage up-

date phase applies the generated patches to A one at a time, in order

of ranking, and stops when a patch is successfully validated (using

differential testing). When the technique terminates successfully, it

produces an updated version of A as well as an API-usage update

report, which developers can use to double check the update.

Although the problem of performing code updates based on ex-

amples has been studied before, most existing techniques (e.g., [8,

39, 52]) mainly target repetitive updates within the same code base.

Moreover, these techniques typically assume that update exam-

ples are provided as inputs. AppEvolve, conversely, automatically

searches for and applies examples across different code bases, while

handling the challenges involved in this process. In particular,AppE-

volve can handle examples that differ in the way the update was
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performed by distilling a common core of update operations and

ranking the examples based on how closely they capture the essence

of the update. In addition, AppEvolve can validate updates using

differential testing, thus providing more confidence in the update.

To assess the usefulness of AppEvolve, we implemented it for

Android apps and performed an empirical evaluation.1 In our evalu-

ation, we assessed the effectiveness and efficiency of our technique

by applying it to 15 real-world apps and 20 real API changes, As far

as effectiveness is concerned, AppEvolvewas able to update a large

majority (85%) of the API changes considered and automatically

validate many (68%) of the updates performed. As for efficiency, the

cost of running AppEvolve is dominated by the search for exam-

ples, which can however be run overnight. Overall, we believe that

our results are promising and provide initial, but clear evidence of

the usefulness of our technique.

The main contributions of this paper are:

• AppEvolve, a new technique for automatically updating an

app when its underlying API evolves, based on distilling

existing examples of analogous updates of other apps.

• A tool that implements AppEvolve and that is publicly avail-

able, together with our experiment data and infrastructure

(https://sites.google.com/view/appevolve).

• An empirical evaluation of AppEvolve, performed on 15

real-world apps, that shows the effectiveness, efficiency, and

overall usefulness of our technique.

2 TERMINOLOGY & MOTIVATING EXAMPLE

Consider twoAPI versions: old API = [m1, ...,mk] and newAPI = [m′
1,

..., m′
l
]. We define an API usage as any call of one or more methods

of either the old or the new API versions. Intuitively, an API-usage

change (AU change) between the old and the new versions of the

API can typically be described as a mapping (AU change mapping)

between one or more methods in the old version and one or more

methods in the new version: [m1, ..., mp] → [m′
1, ..., m

′
q].

To illustrate, consider the change in the Android API version 23

described at [15]: method getAllNetworkInfo(), which returns con-

nection information for all network types supported by a device,

was deprecated in version 23 of the Android API in favor of the

two new methods getAllNetworks() and getNetworkInfo(Network).

The corresponding AU change mapping would be from method

getAllNetworkInfo() to methods getAllNetworks() and getNetwork-

Info(Network). Given an AU change , we define an old API us-

age (resp., new API usage) for that AU change as a sequence of

one or more method invocations that match the left-hand side

(resp., right hand side) of the AU change mapping. For the AU

change we just considered, an old API usage would be an invoca-

tion of getAllNetworkInfo(), whereas a new API usage would be

an invocation of getAllNetworks() followed by an invocation of

getNetworkInfo(Network). Considering an appA and an AU change,

we use the term update to indicate the operation of updating an

old API usage in A to a new API usage, and call the updated app A′.

Finally, we use the term update example to refer to existing updates

(e.g., in a code base).

1Although we defined and implemented AppEvolve for the Android ecosystem, due
to its popularity and the many apps available together with their source code, our
technique can be generalized to other mobile platforms and to evolving APIs in general.

To motivate our work (and help illustrate our technique in later

sections), Figures 2ś5 present two different updates for the AU

change described above. Both updates, which we indicate as up-

dateV1 and updateV2, are derived from actual updates of real apps.

In the figures, lines starting with - indicate code removed by the

update while + indicate added code.

Figure 2 shows the code before updateV1. The code invokes

getAllNetworkInfo at line 4 and iterates over the returned array

of NetworkInfo objects at lines 6-9 to check whether the device is

connected to a network. In the version of the code after updateV1,

shown is in Figure 3, the developer introduced a check at line 4 to

determine the version of the platform on which the app is running.

If the app is running on the old version of the platform (lines 13-18),

the code checks whether the device is connected to a network

similarly to how it was performed in the old version of the code.

Conversely, if the app is running on the new version of the platform

(lines 5-11), the code invokes getAllNetworks (from the new API)

at line 5 and iterates over the array of Network objects to deter-

mine whether the device is connected to a network (lines 7-11).

To determine the connection status, the developer retrieves net-

work information from a Network object invoking getNetworkInfo.

This update example is characterized by two fragments of code

(lines 13-18 and 5-11), each executing on different versions of the

platform (and having access to different APIs). As pointed out in

related work [22, 29], this coding practice is frequent in Android

apps to account for issues generated by the fragmentation of the

ecosystem [22, 29, 47]. This example also shows that updating API

usages might involve using newmethods, handling new parameters,

and manipulating new return values.

As it is possible to observe from Figures 4 and 5, updateV2 is

similar to updateV2, in that both updates (1) introduce a check to

determine the version of the platform on which the app is run-

ning and (2) invoke getAllNetworks and getNetworkInfo from the

new API in one branch of the condition and getAllNetworkInfo in

the other. However, the two updates also have some differences.

UpdateV1 checks the connection status of a NetworkInfo object

by comparing the result obtained by invoking getState against

CONNECTED (line 7 in Figure 2 and lines 9 and 16 in Figure 3), whereas

updateV2 uses isConnected instead. Moreover, updatev2 also logs

information about the type of network being connected (lines 10

and 18 in Figure 5) and makes changes that are not related to the

API usage (line 11 in Figure 4 and line 22 in Figure 5).

This motivating example highlights the potential of using update

examples to update API usages, while also presenting some of the

challenges involved in doing so automatically. In particular, the

example shows that different updates can have commonalities (e.g.,

the check on the version of the API) but also differences (e.g., the

use of getState and CONNECTED versus the use of isConnected or the

presence of additional statements unrelated to the update).

3 TECHNIQUE

In this section, we present AppEvolve, our technique for automat-

ically performing API-usage updates based on update examples.

The technique targets updates related to changes in the API of the

Android platform. The basic idea behind AppEvolve is to update
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Figure 1: High-level overview of AppEvolve.

1 public boolean isNetworkAvailable(Context ctx) {

2 ConnectivityManager ctv = (ConnectivityManager)

3 ctx.getSystemService(Context.CONNECTIVITY_SERVICE);

4 - NetworkInfo[] info = ctv.getAllNetworkInfo();

5 - if (info != null) {

6 - for (int i = 0; i < info.length; i++) {

7 - if (info[i].getState() == NetworkInfo.State.CONNECTED) {

8 return true;

9 } }

10 }

11 return false;

12 }

Figure 2: API-usage example before updateV1.

1 public boolean isNetworkAvailable(Context ctx) {

2 ConnectivityManager ctv = (ConnectivityManager)

3 ctx.getSystemService(Context.CONNECTIVITY_SERVICE);

4 + if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

5 + Network[] networks = ctv.getAllNetworks();

6 + NetworkInfo networkInfo;

7 + for (Network mNetwork : networks) {

8 + networkInfo = ctv.getNetworkInfo(mNetwork);

9 + if (networkInfo.getState().equals(NetworkInfo.State.CONNECTED)) {

10 return true;

11 } }

12 + } else {

13 + NetworkInfo[] info = ctv.getAllNetworkInfo();

14 + if (info != null) {

15 + for (NetworkInfo anInfo : info) {

16 + if (anInfo.getState() == NetworkInfo.State.CONNECTED) {

17 + return true;

18 + } } }

19 }

20 return false;

21 }

Figure 3: API-usage example after updateV1.

1 public boolean isConnected(Context cont) {

2 ConnectivityManager conn = (ConnectivityManager)

3 cont.getSystemService(Context.CONNECTIVITY_SERVICE);

4 - NetworkInfo[] info = conn.getAllNetworkInfo();

5 - if (info != null) {

6 - for (int i = 0; i < info.length; i++) {

7 - if(info[i].isConnected()) {

8 return true;

9 } }

10 }

11 - Toast.makeText(cont, R.s.noNet, Toast.L_S).show();

12 return false;

13 }
Figure 4: API-usage example before updateV2.

1 public boolean isConnected(Context cont) {

2 ConnectivityManager conn = (ConnectivityManager)

3 cont.getSystemService(Context.CONNECTIVITY_SERVICE);

4 + if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

5 + Network[] networks = conn.getAllNetworks();

6 + NetworkInfo networkInfo;

7 + for (Network mNetwork : networks) {

8 + networkInfo = conn.getNetworkInfo(mNetwork);

9 + if(networkInfo.isConnected()))) {

10 + Log.d("Net","NAME:"+networkInfo.getTypeName());

11 return true;

12 } }

13 + } else {

14 + NetworkInfo[] info = conn.getAllNetworkInfo();

15 + if (info != null) {

16 + for (NetworkInfo anInfo : info) {

17 + if(anInfo.isConnected()) {

18 + Log.d("Net","NAME:"+anInfo.getTypeName());

19 + return true;

20 + } } }

21 }

22 + Toast.makeText(cont, cont.getString(R.s.noNet), Toast.L_S).show();

23 return false;

24 }

Figure 5: API-usage example after updateV2.

API usages in a target (Android) app by leveraging how developers

of other apps updated the same API usage in their apps.

Figure 1 provides an overview of AppEvolve and shows its four

main phases. Given a target app and a specification of the AU

changes as inputs, in its API-usage analysis phase, the technique

(1) analyzes the source code of the app to identify API usages that

should be changed and (2) stores this information in the API-usage

report. The update examples search phase uses this information

together with the AU changes specification to look for API-usage

updates in existing code bases. The update examples analysis phase

processes the examples identified to generalize them, compute their

common core, and rank them based on the proximity to the common

core. In this process, the examples are transformed into generic

update patches. Finally, the API-usage update phase leverages the

generic update patches to change the API-usage locations reported

by AppEvolve’s first phase and validates them using differential

testing. The final outputs of the technique are an evolved target

app and an API-usage update report documenting the changes in

the app. We now discuss the different phases in detail.

3.1 API-Usage Analysis

This phase takes as inputs the source code of a target app (TA) and a

set of AU changes (AUC1, ...,AUCn ) and creates an API usage report

that contains the location in TA of old API usages that should be

updated. Each AU change consists in a mapping between methods

in the old and new versions of the API, as described in Section 2.

AppEvolve identifies old API usages that should be updated by

checking if they can execute while TA is running on the new ver-

sion of the the API. (When an app can run on multiple API versions,

some of its code may be programmatically prevented from running

on the some versions of the API [22, 29].) The technique computes

this information by statically analyzing TA. First, AppEvolve com-

putes the set of API versions (SAPI ) on which the statements in

TA can execute by leveraging an inter-procedural data-flow anal-

ysis defined in related work [22]. Second, the technique performs

an intra-procedural analysis to identify old API usages and check

whether method calls therein can execute on the new version of

the API (based on SAPI ). If this is the case, such API usages require

update, so AppEvolve stores them in the API-usage report together

with the location of the corresponding API calls.
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Algorithm 1: Search for update examples.

Input :AU : API usage in old version of API

AU ′: API usage in new version of API
chi: code hosting infrastructure based on version-control system

Output :uesAU change : update examples for AU change = AU → AU ′

1 begin
2 uesAU change = ∅

3 kws = Compute-Keywords(AU ′)

4 files = Find-Files(kws, chi.Get-Index())

5 foreach f ∈ files do
6 cb = f .Get-Code-Base()

7 versionsf = cb.Get-Versions(f )

8 foreach vf ∈ versionsf do

9 vn = vf
10 vo = Find-Previous-Version(versionsf , vn)

11 if vo == null then
12 continue

13 diff = Compute-Differences(vo , vn)

14 linesr = diff .Get-Removed()

15 linesa = diff .Get-Added()

16 if ¬(vo .lines.Uses(AU
′)) ∧linesr .Uses(AU ))

17 ∧ (linesa .Uses-With-Check(AU , AU ′))

18 ∧ Same-Containing-Method(vo , AU , vn , AU
′) then

19 sigo = vo .Get-Containing-Method-Signature(AU )

20 sign = vn .Get-Containing-Method-Signature(AU ′)

21 ueAU change = Up-Ex(cb, vo , sigo , vn , sign , AU , AU ′)

22 uesAU change .Add(ueAU change )

23 return uesAU change

3.2 Update Examples Search

This phase identifies update examples for each old API usage re-

ported in the previous phase by looking at how other developers

updated the corresponding API usages in their apps. To do so, the

technique analyzes the version control history of other apps. The

final output of this phase is a set of update examples for each old

API usage that requires update in the target app.

Algorithm 1 describes how AppEvolve automatically identifies

update examples. The algorithm takes as inputs an old API usage

(AU ), the corresponding new API usage (AU ′), and the location

of a code hosting infrastructure (chi) where code bases for other

apps are publicly accessible. The output of the algorithm is a set of

update examples (uesAU ) for AU .

The algorithm starts with an empty set of examples (line 2) and

identifies code bases that could contain examples by performing

a textual search in the files in chi that use AU ′ (lines 3-4). The

search (Find-Files) is based on a set of keywords extracted from

AU ′ and on an index built on the content of the files in chi. This

step enables AppEvolve to efficiently consider large code bases

and quickly discard irrelevant code (based on the intuition that if a

developer performed an update, the update should be present in the

latest version of a file). The set of keywords (kws) used in the search

contains (1) the name, (2) parameter types, and (3) the declaring

class for each method in AU ′. For our motivating example, kws =

{getAllNetworks, ConnectivityManager, getNetworkInfo, Network }.

At this point, the algorithm processes each file (f ) resulting from

the search to identify those whose history contains an update of

AU to AU ′ (lines 5-22). To do so, the algorithm compares each

version (vn) of f with its previous one (vo), starting from the most

recent version. Given these two versions, the algorithm computes

their differences [41] and extracts removed lines (linesr ) from vo
and added lines (linesa) in vn.

The core part of the algorithm checks whether an update of AU

to AU ′ is present between vo and vn (lines 16-22). Specifically, the

algorithm checks that vo contains no use of AU ′ and searches for

(1) a method in vo whose removed lines are using AU and (2) a cor-

responding method in vn that added new lines using AU and AU ′

(in different branches of a condition that checks the API version).

The algorithm searches for methods in vn also using AU so as to

find examples that perform backward compatible updates, which is

common practice when updating Android apps [22]. If the search

is successful, the algorithm adds the update between the method in

vo (sigo) and vn (sign) to the list of update example for AU (line 21).

For our motivating example, both updateV1 and updateV2 would

be considered valid update examples, as (1) they do not use AU ′

([getAllNetworks, getNetworkInfo]) in their old version, (2) removed

lines in their old version contain AU ([getAllNetworkInfo]), and (3)

added lines in their new version contain AU and AU ′ in different

branches of an API-version check.

The algorithm stores the following information for each update

example it finds: (1) the code base (cb) and its version history infor-

mation, (2) the version of f before the update (vo), (3) the method

signature in vo that contains AU (sigo), (4) the version of f after

the update (vn), (5) the method signature in vn that contains AU

and AU ′ (sign), and (6) the API usages associated with this update

(AU and AU ′). The algorithm terminates by returning the list of

update examples (uesAU change) found.

3.3 Update Examples Analysis

This phase takes as inputs the update examples identified in the

previous phase and translates them into generic update patches that

can be applied to the target app. The algorithm also orders the

patches based on how closely related they are to the common core

of the update that is shared across examples, so as to prioritize

patches that best capture the essence of the update. Algorithm 2

illustrates how AppEvolve performs these two tasks.

3.3.1 Generic Update Patch Generation. The algorithm general-

izes update examples related to an AU change (uesAU change) at

lines 3-18. It first creates an empty list of generic update patches

(gupsAU change) and then processes each example (ueAU change).AppE-

volve starts the task of generalizing ueAU change by identifying a

list of edit operations that transforms the method in the old version

of the code in ueAU change (sigo) to the method in the new version

of the code (sign). The algorithm encodes these edits (edits) as tree

operations performed on the abstract syntax trees (ASTs) built for

the methods (asto and astn). Specifically, the algorithm computes

these edits based on an existing technique that generates an or-

dered list of tree operations for transforming an AST into another

AST by operating on the nodes of the two ASTs [10, 38]. The tech-

nique consider four types of edit operations: (1) Insert(sn1, sn2 , i),

which adds statement node sn1 as the i
th child of statement node

sn2 ; (2) Move(sn1, sn2 , i), which moves statement node sn1 from

its current position and adds it as the ith child of statement node

sn2 ; (3) Update(sn1, sn2), which replaces statement node sn1 with

statement node sn2 ; and (4) Delete(sn1), which deletes statement

node sn1. For each type of edit, we refer to sn1 as the statement node

affected by the edit and denote the corresponding statement with as.

Figures 6 and 7 show a summarized version (for space limitations)

of the edits for updateV1 and updateV2 in our motivating example.

At this point, the algorithm identifies edits that are related to AU

and AU ′ (redits) using an intra-procedural dependency analysis
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Algorithm 2: Analysis of update examples.

Input :uesAU change : update examples for AU change = AU → AU ′

Output :gupsAU change :: ordered list of generic update patches

1 begin
2 //create generic update patches

3 gupsAU change = []

4 foreach ueAU change ∈ uesAU change do

5 asto = Build-AST(ueAU change .sigo )

6 astn = Build-AST(ueAU change .sign)

7 edits = Compute-Edits(asto , astn)

8 redits = Find-Related-Edits(edits, asto , ueAU change .AU , astn ,

ueAU change .AU
′)

9 gedits = []

10 foreach redit ∈ redits do
11 pstn, pstn2= Compute-Placement(redit, redits)

12 abstr = Compute-Abstraction(redit)

13 gedit = Generic-Edit(redit, pstn, pstn2 , abstr)

14 gedits.add(gedit)

15 cvars = Find-Context-Variables(astn , gedits)

16 Annotate-Context-Variables(cvars, asto , AU )

17 gupAU change = Generic-Update-Patch(gedits, cvars)

18 gupsAU change .Add(gupAU change )

19 //sort generic update patches based on proximity to core of update

20 caseq = Compute-Core(gupsAU change )

21 foreach gupAU change ∈ gupsAU change do

22 cprox = Compute-Core-Proximity(gupAU change , caseq)

23 gupAU change .Set-Core-Proximity(cprox)

24 gupsAU change = Order-By-Core-Proximity(gupsAU change )

25 return gupsAU change

(Find-Related-Edits at line 8). Specifically, it uses backward and

forward dependency analysis to select the edits that are influencing

or are influenced by the values involved in method calls from AU

and AU ′. This analysis uses both asto and astn to compute depen-

dencies, as certain edits might operate only on statements in one of

the two trees (e.g., D for int i=0 i<info.length i++ from Figures 6

and 7). The algorithm considers all the edits not in redits at the end

of the analysis as unrelated to the update and discards them. In

our motivating example, AppEvolve determines that all edits in

Figure 6 and all edits except for U Toast.makeText... in Figure 7

are related to the update.

The edits identified so far are dependent on the specific exam-

ple from which they were computed. At this point, the algorithm

generalizes them so that they can be used to update AU in the meth-

ods of the target app. To do so, the algorithm iterates over redits

(lines 10-14) and translates each edit into a generic edit (gedit). A

generic edit consists of three elements, which we describe below:

(1) the original edit (redit), (2) the position (pstn) of as, expressed

in terms of an ancestor (ancst) and a predecessor (pred) statements,

and (3) an abstraction (abstr) of as.

ancst and pred of as are computed by analyzing predits, the set of

statements that are affected by edits in redits and occur before the

edit under analysis. ancst is computed by analyzing parent relations

in the AST and corresponds to the first statement in the relation

chain starting at as that is affected by an edit in predits. pred is the

latest statement appearing before as in a postorder traversal of the

AST that (1) is not present in the subtree rooted at as and (2) is af-

fected by and edit in predits. In the case of Move edits, the technique

also computes pstn2 , which contains ancst and pred for the new

position of as. Computing ancst and pred is necessary because the

original position of a statement affected by an edit is based on the

AST on which it was computed and will not be meaningful in differ-

ent ASTs. Consider, as an example, the edits in Figure 6. The ancst

and pred for edit I NetworkInfo networkInfo would be edits I if

Build.VERSION.SDK_INT>= Build.VERSION_CODES.M and I Network[]

networks = ctv.getAllNetworks(), respectively. abstr is a represen-

tation of a statement in which variables are replaced by their types.

For instance the abstraction for statement if info!=null, where

the type of info is NetworkInfo, would be if NetworkInfo!=null.

AppEvolve uses this abstraction in a later stage of the algorithm to

compute commonalities of the update across examples.

At this point (line 15), the algorithm has extracted an ordered list

of generic edits from an update example. It then proceeds by identi-

fying the variables (and their types) that are used by statements in

astn that are affected by the edits but are not defined in any of these

statements. We refer to such variables as context variables (cvars), as

they provide the context for the update. For the motivating example,

the edits associated with updateV1 have only one context variable:

ctv, of type ConnectivityManager. The algorithm further processes

the context variables (Annotate-Context-Variables) to identify

those directly used by method invocations in AU . For example,

variable ctv in updateV1 would be identified because it is used by

method getAllNetworkInfo.AppEvolve uses this information when

applying a patch to the target app.

Context variables and generic edits define the content of a generic

update patch (gupAU change), which the algorithm adds to the list

of patches (gupAU change).

3.3.2 Generic Update Patch Prioritization. After the algorithm has

translated all update examples into generic update patches, it orders

them based on how related they are to their common coreÐthe

parts of the update shared across all patches (lines 20-24). We define

the common core in terms of the longest subsequence of edits that is

shared across all patches, which the algorithm computes by solving

a multiple longest common subsequence problem (MLCS) [18].

Because patches from different examples might operate on variables

with different names, our technique computes an abstraction of the

edit in the patches before encoding them into the MLCS problem.

The abstraction for an edit consists in a string composed of (1)

the type of the edit followed by (2) the abstraction abstr of the

statement involved in the edit. Figures 8 and 9 show the abstract

edits computed for the patches from updateV1 and updateV2 (there

types are replaced by $T due to space limitations). Figure 10 shows

the longest subsequence shared across the two patches.

After computing the core as we just described (Compute-Core

at line 20), the algorithm computes the core proximity of each

patch p, which indicates how closely related is p to the core and is

computed by dividing the number of edits in the core by the number

of edits in p. It then order the patches accordingly (Order-By-Core-

Proximity). For our motivating example, the core proximity values

associated with the patches computed for updateV1 and updateV2

are 0.77 and 0.67, which shows that the patch for updateV1 is

closer to the core (due to the fact that this patch does not contain

the additional logging statement Log.d). However, the patch for

updeteV1 does not havemaximum value (1) because the two patches

use different statements (getState and CONNECTED vs. isConnected),

which affects the computation of the core. Note that we decide

to rank patches instead of merging them to avoid disregarding

statements that are necessary to perform the update. The ordered

list of patches gupsAU change is the final output of the algorithm.
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I if Build.VERSION.SDK_INT>=Build.VERSION_CODES.M

I Network[] networks=ctv.getAllNetworks()

I NetworkInfo networkInfo

I for Network mNetwork:networks

M NetworkInfo[] info=ctv.getAllNetworkInfo()

M if info!=null

I networkInfo=ctv.getNetworkInfo(mNetwork)

U if info[i].getState()==CONNECTED

if networkInfo.getState().equals(CONNECTED)

M if networkInfo.getState().equals(CONNECTED)

I for NetworkInfo anInfo:info

I if anInfo.getState()==CONNECTED

I return true

D for int i=0 i<info.length i++

Figure 6: Edits for updateV1 in our motivating example.

I if Build.VERSION.SDK_INT>=Build.VERSION_CODES.M

U Toast.makeText(cont,noNet,L_S).show()

Toast.makeText(cont,cont.getString(noNet),L_S).show()

I Network[] networks=conn.getAllNetworks()

I NetworkInfo networkInfo

I for Network mNetwork:networks

M NetworkInfo[] info=conn.getAllNetworkInfo()

M if info!=null

I networkInfo=conn.getNetworkInfo(mNetwork)

U if info[i].isConnected()

if networkInfo.isConnected()

M if networkInfo.isConnected()

I Log.d("Net","NAME:"+networkInfo.getTypeName())

I for NetworkInfo anInfo:info

I if anInfo.isConnected()

I Log.d("Net","NAME:"+anInfo.getTypeName())

I return true

D for int i=0 i<info.length i++

Figure 7: Edits for updateV2 in our motivating example.

I if SDK_INT>=M

I Network[] $T=$T.getAllNetworks()

I NetworkInfo $T

I for Network $T:$T

M NetworkInfo[] $T=$T.getAllNetworkInfo

M if $T!=null

I $T=$T.getNetworkInfo($T)

U if $T[$T].getState()==CONNECTED

M if $T.getState().equals(CONNECTED)

I for NetworkInfo $T:$T

I if $T.getState()==CONNECTED

I return true

D for int $T=0 $T<$T $T++

Figure 8: Edit abstractions for up-

dateV1 in our motivating example.

I if SDK_INT>=M

I Network[] $T=$T.getAllNetworks()

I NetworkInfo $T

I for Network $T:$T

M NetworkInfo[] $T=$T.getAllNetworkInfo

M if $T!=null

I $T=$T.getNetworkInfo($T)

U if $T[$T].isConnected()

M if $T.isConnected()

I Log.d("Net","NAME:"+$T.getTypeName())

I for NetworkInfo $T:$T

I if $T.isConnected()

I Log.d("Net","NAME:"+$T.getTypeName())

I return true

D for int $T=0 $T<$T $T++

Figure 9: Edit abstractions for up-

dateV2 in our motivating example.

I if SDK_INT>=M

I Network[] $T=$T.getAllNetworks()

I NetworkInfo $T

I for Network $T:$T

M NetworkInfo[] $T=$T.getAllNetworkInfo

M if $T!=null

I $T=$T.getNetworkInfo($T)

I for NetworkInfo $T:$T

I return true

D for int $T=0 $T<$T $T++

Figure 10: Common edit abstraction

subsequence between updateV1 and

updateV2.

3.4 API-Usage Update

The last phase of our technique applies generic update patches

to old API usages in the target app and validates them through

differential testing. The technique updates old API usages detailed

in the API-usage report one at a time to ensure that, during the

validation process, updates for different API usages do not interfere

with one other. Algorithm 3 describes this phase. The algorithm

takes as inputs (1) the target app (TA), (2) the API usage that should

be updated (AU ), (3) the location ofAU in TA (locAU ), (4) the generic

update patches (gupsAU change) for the AU change at hand, and (5)

a test suite (TS) for validating the update target app. It produces as

outputs an updated target app TA′ and an API-usage update report

(urAU change), in which changes (for the specific occurrence of AU )

are documented for the developer of TA.

After creating an empty urAU change , the algorithm processes

each patch starting from the one at the top of the listÐthe one closest

to the core of the update (lines 3-20). Given a patch, the algorithm

first determines whether the patch (gupAU change) is applicable to

AU at locAU in TA. Applicability of a patch is determined by two

factors. First, the context variables associated with the patch must

be in scope in the program point in which the patch is supposed

to be applied. Second, it must be possible to successfully apply the

generic edits (in their entirety) to the method in TA using AU .

When determining the applicability of a generic update patch

gupAU change , the algorithm first builds the AST (astt ) of the method

containing AU based on locAU . It then iterates over the statement

nodes (stmt) in astt to find the point in which to apply gupAU change

(lines 6-20). It does so by (1) computing svars, the set of variables

in scope at stmt (Find-Variables-In-Scope) and (2) identifying

whether there is a mapping between variables in svars and con-

text variables (gupAU change .cvars). The algorithm tries to find such

mapping by translating this task into an instance of the assignment

problem [43] and considering as mappings all solutions of minimum

cost. Specifically, AppEvolve uses the algorithm by Murty [44] by

assigning a zero cost to the mapping of a context variable to a scope

variable of the same type and a cost of 1 to all other mappings. In

this way, all solutions with cost zero can be considered plausible

mappings between gupAU change .cvars and svars. AppEvolve adds

additional constraints to the assignment problem by forcing the

mapping between (1) the variables in gupAU change .cvars that are

marked as being used by method invocations from AU and (2) the

corresponding variables in method invocations from AU in TA that

are part of svars. In this way, AppEvolve can limit the number

of mappings when the number of compatible variables in scope is

high. If no mapping is possible, the algorithm analyzes the variables

in scope at the next location in the AST.

After finding a successful mapping (mpng), the algorithm applies

the patch to astt by first replacing its context variables with vari-

ables in scope according to mpng. It then performs the edits in the

patch gupAU change .gedits starting at the location in astt identified

by stmt (line 10). For each edit type, the algorithm identifies state-

ments pstmts in astt to which the edit can be applied by performing

a preorder traversal of astt starting at stmt. If an edit operation

adds a statement at the beginning of pstmts, stmt is updated to be

the new initial statement. The algorithm operates differently based

on the edit type. For Insert edits, it adds the affected statement as

at the earliest point across pstmts, based on position pstn (see Sec-

tion 3.3). ForMove edits, it uses abstr to find a matching statement

s in pstmts, starting at pstn, and moves s to its new position pstn2 .

For Update edits, it uses abstr to find a matching statement s in

pstmts, starting at pstn, and updates s with the new statement from
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Algorithm 3: API-usage update.

Input :TA: target app
AU : old API-usage that requires update
locAU : location of the old API-usage in TA
gupsAU change : generic update patches for AU change = AU → AU ′

TS: test suite to validate the updated target app

Output :TA′: target app with performed AU change AU change
urAU change : API-usage update report for AU change

1 begin
2 urAU change = []

3 foreach gupAU change ∈ gupsAU change do

4 sigt = TA.Get-Containing-Method-Signature(locAU )

5 astt = Build-AST(sigt )

6 foreach stmt ∈ astt .Preorder() do
7 svars = Find-Variables-In-Scope(astt , stmt)

8 mpngs = Compute-Mappings(svars, gupAU change .cvars, astt , AU )

9 foreachmpng ∈ mpngs do
10 ast′t = Apply-Update-Patch(astt , stmt ,mpnд, gupAU change )

11 if ast′t != null then

12 TA′ = TA.Replace(Code(astt ), Code(ast
′
t ))

13 if TS != null then
14 if Validate(TA′, TS) then
15 urAU change .Add(Val-Update(Code(astt ), Code(ast

′
t )))

16 return TA′, urAU change

17 else
18 continue

19 else
20 urAU change .Add(Appl-Update(Code(astt ), Code(ast

′
t )))

21 TA′ = TA

22 return TA′, urAU change

the edit. Finally, for Delete edits, it uses abstr to find a matching

statement s in pstmts, starting at pstn, and deletes s .

If any of the edit operations fails, the algorithm returns a null

value to indicate that the update was unsuccessful. Conversely, if

all edit operations succeed, function Apply-Update-Patch returns

a new AST (ast ′t ) that encodes the update of AU . At this point, the

algorithm considers the patch as applicable to TA and updates the

code of astt with the code of ast
′
t in TA, thus generating the updated

app TA′. It then validates TA′ using differential testing (lines 13-20).

If a test suite for TA is already available and exercises AU with-

out failures, AppEvolve uses this test suite (passing it as parameter

TS to Algorithm 3). Otherwise, if a test suite is not available, AppE-

volve tries to create one using random input generation while

running TA on the old version of the API. (Note that any input gen-

eration strategy could be used.) If the created test suite exercises

AU without failures, AppEvolve uses it as TS. Otherwise, AppE-

volve passes a null TS to the algorithm, which would not validate

the update (line 20) and document the code changes in urAU change ,

marking them as applicable but not validated.

Conversely, if Algorithm 3 receives an actual test suite TS as

input, it uses it to validate the update. Procedure Validate (line 14)

executes TS on both (1) TA′ running on the new version of the

API and (2) TA′ running on the old version of the API (to check

for backward compatibility). If no failures occur, the update is con-

sidered to be valid: the algorithm documents the code changes in

report urAU change , marking them as validated, and moves to the

next API usage in the API-usage report. Otherwise, the algorithm

keeps validating updates until it either is able to validate one or it

had analyzed all possible updates.

After processing all API usages in the API-usage report, this

phase produces as output an evolved target app and an API-usage

update report, where validated and applicable updates are docu-

mented. These two artifacts are the final output of AppEvolve.

Table 1: Benchmarks used in the empirical evaluation.

IDA Name Category App Ver API Ver LOC (K)

A01 BipolAlarm Entertainment 0.1.1 22 4
A02 Conversations Communication 1.8.0 22 53.1
A03 ParkenDD Navigation 1.2.3 22 18
A04 Clean SB Tools 1.1.4 22 16.4
A05 OpenSudoku Game 2.5.2 22 24.3

A06 WiGLE WIFI Tools 2.10.0 23 35.7
A07 Footguy Lifestyle 1.5.0 23 3.4
A08 Calendar IE Productivity 2.4.0 23 8.2
A09 Diolinux News 2.2.2 23 13
A10 Solar Compass Navigation 1.0.0 23 14.4

A11 Symphony Entertainment 1.1.9 25 15
A12 SysLog Tools 2.1.1 25 27.1
A13 Muzei Personalization 2.4.0 25 64.4
A14 Notes News 1.0.1 25 25.2
A15 OneTwo Tools 1.1.6 25 20.7

4 EMPIRICAL EVALUATION

To determine the effectiveness and efficiency of AppEvolve, we

implemented it in a tool built in Java and Python.We then evaluated

the performance of the tool on a set of real-world apps, usingGitHub

as the code base where to search for update examples. We also

compared the effectiveness of AppEvolve with that of LASE [39].

We selected LASE as a baseline because it also distills edit scripts

from examples, is the technique most closely related to AppEvolve,

handles Java programs, and is publicly available [40]. However, it

is fair to note that LASE has different goals from AppEvolve. In

particular, LASE was designed to work with one application at a

time, and thus with fairly homogeneous examples. In our context,

conversely, examples are collected from different apps and can

therefore be quite diverse.

Specifically, we targeted the following research questions:

RQ1: Can AppEvolve successfully update API usages in real apps?

RQ2: For the update examples identified by AppEvolve, how do

AppEvolve and LASE compare in terms of effectiveness?

RQ3:What is the cost of running AppEvolve?

4.1 Benchmarks

As benchmarks, we used 15 real-world apps from the F-droid repos-

itory [9]. We chose F-droid because the apps therein are catego-

rized based on the latest API version they support. We selected

three sets of five apps with two characteristics. First each set con-

tained apps with the same latest supported API version: 22, 23, and

25.2 For each API version considered, we then manually generated

an API-change specification by studying the corresponding API

documentation [11ś14]. Second, using the generated API-change

specifications, we made sure that each app contained at least one

API usage that (1) was different from those in the other apps and (2)

had to be updated in the subsequent API version. Table 1 provides

information on the benchmarks considered: name (Name), category

(Category), version (App Ver), latest supported API version (API

Ver), and size (LOC).

Note that generating API-change specifications took us less than

an hour. Moreover, these specifications must be computed only

once for each new version of the API. Nevertheless, in future work

we plan to compute the specification automatically (see Section 7).

2We chose these three versions because their subsequent version is a major version
release and their adoption rate is above 10% [16] at the moment of this writing.
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Table 2: Results of the update examples search phase.

IDU Old API Usage API Ver Files PFiles Time UE

U01 [addAction] 23 17139 11862 t imeout 1
U02 [getAllNetworkInfo] 23 6502 6502 5h41m 15
U03 [getCurrentHour] 23 6950 6950 9h16m 19
U04 [getCurrentMinute] 23 6532 6532 8h55m 18
U05 [setCurrentHour] 23 3988 3988 5h27m 17
U06 [setCurrentMinute] 23 2977 2977 4h48m 17
U07 [setTextAppearance] 23 35914 26151 t imeout 21

U08 [addGpsStatusListener] 24 587 587 58m 1
U09 [fromHtml] 24 49070 13597 t imeout 64
U10 [release] 24 25420 25420 21h50m 2
U11 [removeGpsStatusListener] 24 467 467 52m 1
U12 [shouldOverrideUrlLoading] 24 7842 7842 12h22m 0
U13 [startDrag] 24 2804 2804 3h3m 2

U14 [abandonAudioFocus] 26 138 138 1h03m 5
U15 [getDeviceId] 26 21144 21144 16h51m 7
U16 [requestAudioFocus] 26 443 443 1h30m 4
U17 [saveLayer] 26 19532 19532 11h02m 1
U18 [setAudioStreamType] 26 3122 3122 4h05m 16
U19 [vibrate(long)] 26 3018 3018 14h42m 7
U20 [vibrate(long[],int)] 26 2930 2930 14h43m 3

4.2 Results

4.2.1 RQ1 (Effectiveness). To answer RQ1, we applied AppEvolve

to the 15 benchmarks considered. Tables 2, 3, and 4 report the

results of the evaluation. Overall, AppEvolve was able to update

17 out of 20 API usages (85% success rate) and 37 out of 41 of their

occurrences across benchmarks.

Table 2 shows the results of the Update Examples Search phase.

Lines in the table correspond to API usages that require update and

are present in at least one of the benchmarks. The number of API

usages (20) is greater than the number of benchmarks (15) because

some benchmarks contained multiple API usages to be updated.

For each API usage, the table shows: its ID (IDU ); the API method

call to be updated (Old API Usage); the new version of the Android

API (API Ver); the number of files in the code base matching the

keywords in the code search (Files); how many of these files were

processed by AppEvolve (PFiles); the time it took AppEvolve to

process them (Time); and the number of actual update examples

finally identified by the search (UE). (The values in Columns Files

and PFiles are the same unless AppEvolve reached the 24 hours

timeout before processing all the files returned by the search.) As

the table shows, the technique was able to automatically find at

least one update example for all API usages but U12.

Table 3 shows, for each of the 20 API usages considered, the

properties of the corresponding update examples. Column CUE

represents the number of update examples we considered. This

number differs from the one in column UE of Table 2 for practi-

cal reasons: in our current implementation, update examples must

be manually encoded as Eclipse projects, which is extremely time

consuming. We therefore randomly selected up to five update ex-

amples resulting from the search for the Update Examples Analysis

phase. Columns under the Edits header show the minimum (Min),

maximum (Max), and average (Avg) number of edits needed to

transform the old method ASTs into the new method ASTs for

the considered examples. Columns under the Relevant Edits header

show the minimum, maximum, and average number of these AST

edits that are actually related to the API usage through a chain of

dependencies. As the table shows, in 14 out of 19 cases, the average

number of relevant edits is lower than the average number of AST

Table 3: Characteristics of the update examples considered.

IDU CUE
Edits Relevant Edits Core Proximity Value

Time
Min Max Avg Min Max Avg Min Max Avg

U01 1 6 6 6 6 6 6 1 1 1 52s
U02 5 16 22 19 16 21 18.8 0.43 0.56 0.48 14s
U03 5 6 17 9.8 5 16 8.8 0.31 1 0.68 14s
U04 5 7 13 9.2 5 13 8.2 0.38 1 0.7 15s
U05 5 7 19 11.4 5 5 5 1 1 1 15s
U06 5 7 19 9.4 5 5 5 1 1 1 15s
U07 5 5 13 8 5 6 5.2 0.83 1 0.97 15s

U08 1 5 5 5 5 5 5 1 1 1 3s
U09 5 5 14 8.6 5 13 8.2 0.31 0.8 0.54 14s
U10 2 5 26 15.5 5 5 5 1 1 1 4s
U11 1 5 5 5 5 5 5 1 1 1 11s
U12 - - - - - - - - - - -
U13 2 5 5 5 5 5 5 1 1 1 8s

U14 5 5 17 8.8 5 8 6.2 0.63 1 0.85 26s
U15 5 7 17 12.4 7 17 11.6 0.24 0.57 0.5 26s
U16 4 6 18 11.5 6 15 10.5 0.2 0.5 0.43 26s
U17 1 5 5 5 5 5 5 1 1 1 30s
U18 5 8 11 9 8 10 8.8 0.6 0.75 0.69 29s
U19 5 7 47 22.6 7 9 7.6 0.56 0.71 0.67 25s
U20 3 6 47 33.33 6 13 10.33 0.46 1 0.65 29s

edits. This shows that it is common for developers to perform addi-

tional changes that are unrelated to the update and that excluding

these changes from the generated patches is important. The table

also shows that the relevant edits still involve multiple statements,

which highlights the need for a technique that performs updates au-

tomatically. Columns under the Core Proximity Value header show

the minimum, maximum, and average value computed to measure

the proximity of a patch to the update core. For 11 out of 19 cases,

the average core proximity value is different from its minimum

and maximum values, which shows that the examples considered

perform the update differently.

Table 4 shows the results of the API-Usage Update phase, to-

gether with the details of its validation process. These are the main

results for AppEvolve, as they illustrate the updates that the tech-

nique could successfully generate. In this case, each row in the table

corresponds to the first patch validated for a specific occurrence of

a given API usage (IDU ) in a specific application (IDA).

For each patch p, Column Appl GUP shows the total number of

applicable patches (including p) computed for the same API usage.

In four cases AppEvolvewas unable to identify an applicable patch.

For U12, in A09, the technique did not find any update examples.

For two occurrences of U11 and one of U08, in A06, the available

patches required a context variable that was not in scope for the

methods containing the usages in the benchmark. In all other cases,

the validated patch was also the first applicable one.

Columns Edits, REdits, and CPV show the number of edits, the

number of relevant edits, and the core proximity value for p. In

three cases (two instances of U14 in A11, and the instance of U15

in A12), p does not have the maximum core proximity value among

all examples (see maximum values in Table 3). In these cases, the

additional statements in p lowered its core proximity value but also

reduced the number of context variables (e.g., by defining some of

these variables), thus making the patch applicable. This shows that

only selecting statements from the core of the update can prevent

successful updates in some cases.

Columns SVars andCVars report the number of scope and context

variables in p. The columns under header Validated show whether
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Table 4: Details on validated patches for all API usages.

IDA IDU Appl GUP Edits REdits CPV SVars CVars
Validated

Time
Auto Man

A01

U01 1 6 6 1 8 5 ✗ ✓ 1s052ms

U01 1 6 6 1 8 5 ✗ ✓ 899ms

U01 1 6 6 1 8 5 ✗ ✓ 783ms

A02

U02 2 16 16 0.56 3 1 ✓ ✓ 2s690ms

U03 2 7 5 1 6 2 ✗ ✓ 3s964ms

U04 2 7 5 1 4 2 ✗ ✓ 4s396ms

U05 5 17 5 1 5 2 ✓ ✓ 5s964ms

U06 5 7 5 1 7 2 ✓ ✓ 4s760ms

A03 U03 2 7 5 1 12 2 ✓ ✓ 3s186ms

A04

U03 2 7 5 1 2 2 ✓ ✓ 1s558ms

U04 2 7 5 1 3 2 ✓ ✓ 2s323ms

U05 5 17 5 1 3 2 ✓ ✓ 1s964ms

U06 5 7 5 1 4 2 ✓ ✓ 1s636ms

A05
U07 4 11 5 1 16 3 ✓ ✓ 5s278ms

U07 4 11 5 1 16 3 ✓ ✓ 5s403ms

A06

U08 - - - - - - - - 3s195ms

U09 3 5 5 0.8 31 2 ✗ ✓ 9s802ms

U11 - - - - - - - - 2s616ms

U11 - - - - - - - - 3s414ms

A07 U09 3 5 5 0.8 9 2 ✓ ✓ 809ms

A08

U09 1 5 5 0.8 5 2 ✓ ✓ 1s595ms

U09 3 5 5 0.8 4 2 ✗ ✓ 1s311ms

U10 2 26 5 1 3 1 ✓ ✓ 524ms

A09 U12 - - - - - - - - -

A10 U13 2 5 5 1 8 4 ✗ ✓ 1s630ms

A11

U14 2 8 8 0.63 8 2 ✓ ✓ 1s060ms

U14 2 8 8 0.63 7 2 ✓ ✓ 1s030ms

U16 1 15 15 0.2 11 5 ✓ ✓ 724ms

U18 3 8 8 0.75 3 1 ✓ ✓ 710ms

A12 U15 1 7 7 0.57 8 2 ✓ ✓ 1s479ms

A13 U17 1 5 5 1 14 7 ✓ ✓ 1s520ms

A14 U18 3 8 8 0.75 2 1 ✗ ✓ 1s211ms

A15

U19 3 47 7 0.71 3 2 ✗ ✓ 1s897ms

U19 3 47 7 0.71 4 2 ✓ ✓ 1s815ms

U19 3 47 7 0.71 3 2 ✓ ✓ 825ms

U19 3 47 7 0.71 3 2 ✓ ✓ 1s066ms

U19 3 47 7 0.71 10 2 ✓ ✓ 770ms

U19 3 47 7 0.71 11 2 ✓ ✓ 1s054ms

U20 1 6 6 1 6 3 ✓ ✓ 927ms

U20 1 6 6 1 5 3 ✗ ✓ 770ms

U20 1 6 6 1 12 3 ✗ ✓ 560ms

the update was automatically validated (✓in column Auto) or man-

ually validated (✓in column Man). Since none of the benchmarks

had an associated test suite, our technique generated random inputs

to automatically validate the patches, as described in Section 3.4.

AppEvolve could automatically validate 25 patches out of the 37

generated. For the remaining 12 patches, the generated inputs did

not cover the code of the update, so we validated the patches by

generating inputs manually. We also manually analyzed the code

of all 37 patches and confirmed that it was following the changes

described in the API documentation.

In summary, we believe that the results for RQ1 show that AppE-

volve can be effective in automatically updating API usages. Over-

all, AppEvolve was able to automatically update 85% of the cases

considered and automatically validate 68% of these updates.

4.2.2 RQ2 (Effectiveness Comparison). To answer RQ2, we applied

LASE to the same set of 15 benchmarks considered for RQ1. As

inputs to LASE, we used the update examples in Table 3, that is,

the examples automatically retrieved by AppEvolve and used to

perform the update tasks in Table 4. Unfortunately, LASE was

unable to (fully) perform the update tasks considered, for different

reasons. For nine tasks, LASE could not identify where to apply the

edit script in the target app (Reason #1). For another eight tasks,

the generated edit script was incomplete (Reason #2). For one task,

LASE applied the edit script at the wrong program location (Reason

#3). The remaining update tasks failed for multiple reasons: 10 tasks

for #1 + #2 and 12 tasks for #2 + #3. (In one case, AppEvolve did

not find update examples.)

After further analyzing the results, we believe that the main rea-

son for LASE’s performance is the fact that the tool was designed

to operate in a different context. As we mentioned in Section 4,

LASE was designed to work with update examples extracted from

a single code base. When presented with the update examples auto-

matically extracted by AppEvolve from multiple code bases, LASE

had problems handling the diversity in terms of (1) operations used

to perform the updates and (2) locations where the updates are

performed. In fact, these possible limitations are mentioned in the

LASE paper itself [39].

Based on the above results and analysis, we conclude that AppE-

volve is more effective than LASE when used to automatically

perform app updates for API changes.

4.2.3 RQ3 (Efficiency). To answer RQ3, we measured the time

taken by each phase of the technique to process the benchmarks

when running on a workstation with 64GB of RAM, one Intel Xeon

i7-6700K Skylake 4.0GHz processor, and Ubuntu 16.04. The API-

Usage Analysis phase took 28 seconds on average. As for the other

phases, the columns labeled Time in Tables 2, 3, and 4 report the time

taken by the Update Examples Search, Update Examples Analysis,

and API-Usage Update, respectively. (Note that the time shown in

Table 4 does not include the time to validate a patch, as it is too

dependent on either the characteristics of an existing test suite or

the specific input generation tool used.)

As these results show, the Update Examples Search phase com-

pletely dominates the other phases, with 10 hours and 27 minutes

on average to complete (and reaching a timeout of 24 hours in

three cases). The most expensive operation in this phase is trans-

ferring a remote code base to analyze it locally. However, indexing

repositories offline could speed-up this phase, which could also

be parallelized and run overnight (and the results shared across

developers). All the other phases can run fairly efficiently.

5 LIMITATIONS AND THREATS TO VALIDITY

Our technique analyzes updates within a method’s boundary and

does not currently handle updates that span across multiple meth-

ods, a situation that occurred for two of the 20 cases we considered

(see Table 3). We leave this improvement as future work. AppE-

volve cannot currently automatically search for examples if there

are no methods in the new API usage (i.e., the API usage was re-

moved). This situation should rarely occur, as APIs tend to follow a

deprecate-replace-remove cycle [30], and we did not experienced it

in our evaluation.

Threats to external validity. Our results might not generalize to

other apps or API usages. To mitigate this threat, we used randomly

selected real-world apps from different categories and considered

different versions of the API.

Threats to construct validity. There might be errors in the imple-

mentation of our technique. To mitigate this threat, we extensively

tested our tools and inspected our results.
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6 RELATED WORK

Example-Based ProgramUpdate. LASE [39] performs repetitive

edits in a program by computing an edit script from update exam-

ples. It extends SYDIT [38], an earlier approach by the same authors,

with support formultiple examples to improve generalization of edit

scripts. Given two edits, LASE identifies the common edit operations

between them, abstracts them as an edit script, and identifies pos-

sible locations where to apply the edit script. Unlike LASE, which

relies on developers to provide example edits, AppEvolve leverages

API change specifications to locate update examples automatically.

Moreover, AppEvolve computes and ranks patches by considering

the differences between the update examples, rather than simply

taking their common edit operations, which avoids creating incom-

plete edit scripts when multiple, possibly heterogeneous changes

are considered. Finally, AppEvolve can automatically validate up-

dates using differential testing, rather than just providing them to

the developers. RASE [37] extends LASE to target clone removal.

Meditor [61], developed concurrently with AppEvolve, shares

similar goals with our technique, but uses a different approach that

performs updates by looking at examples in isolation.

REFAZER [52] learns code transformations from examples by

leveraging a domain-specific language that describes common pro-

gram transformations. Code transformations consist of a location

expression, used to determine applicability of a rewrite rule, and

edit operations to be performed. Because the location expression

is designed to target repetitive edits, it can be difficult to use these

code transformations at structurally different locations (which is

needed in our context). This issue is also present for three other

techniques: ARES [8], which computes update patterns using an

example ordering process, a set of adjustment rules, and deter-

mines update applicability based on example locations; VuRLE [34],

which uses update examples and their code location to detect and

repair security vulnerabilities; and the approach by Santos and col-

leagues [53], which uses different techniques to identify possible

locations where to apply a change. AppEvolve is more general

in determining such location because it considers the variables

in scope within the methods that contain API usages. In addition,

none of these techniques uses differential testing to validate updates

automatically.

A4 [27] learns API migration patterns from update examples

and applies these patterns to the source code of Android apps.

AppEvolve differs from A4 in that it identifies update examples in

remote repositories, handles changes in return values, and is able to

prioritize examples that are closely related to the core of the update

shared across examples. Update examples have also been used by

HireBuild [21] to generate updates for build scripts, which is a

related but different problem.

Coccinelle [48] uses manually defined semantic patches to per-

form repetitive edits. Twinning [46] uses programmer specified

mappings to adapt programs to alternative APIs. Balaban and col-

leagues [4] also leverage manually specified mappings, but to sup-

port class library migration. Unlike these techniques, AppEvolve

searches and computes edit scripts automatically. textscspfind [1]

extends Coccinelle by computing edit scripts from manually pro-

vided examples that contain term-replacement operations. These

operations are less expressive than the ones computed by AppE-

volve, as they cannot express ordering between terms.

Edit Suggestions. Other techniques suggest code edits but do not

modify target code (e.g., [3, 7, 42, 45, 57, 60]). In particular, LibSync

identifies changes between two versions of an API and analyzes up-

dated API client applications to identify usage adaptation patterns

and suggest edit examples. However, it cannot abstract suggested

edits and developers need to update the code manually. Compared

to AppEvolve, most of the other techniques either target a different

problem (e.g., suggesting parameters for method calls [3] or recom-

mending code changes for back-porting of device drivers [57]) or

do not automate and validate the update process.

Code Transfer. Our technique is also tangentially related to ap-

proaches that transfer code and functionality across software sys-

tems for various purposes, such as adding new features to a system

(e.g., [5, 20, 54]), improving performance (e.g., [51]), or repairing

functionality (e.g., [55]). AppEvolve share with these techniques

the idea of transferring code between software systems but focuses

on software evolution and uses the version history of existing code

bases to automatically identify the code to be transferred.

ProgramRepair. Program repair techniques use various approaches

to modify statements in a faulty program and repair it (e.g., [2, 17,

23ś26, 32, 33, 36, 49, 50, 56, 58, 59, 62]). AppEvolve is related to

some of these techniques (e.g., [24, 28, 32, 33]) that also use exam-

ples to find fixes. However, besides having a different goal, these

techniques use examples mostly to improve the effectiveness of

their search for a fix.

7 CONCLUSION

Mobile apps must be updated when the API of their underlying OS

platform changes. This task is not only time consuming, but also

error prone. To address this problem, we proposed AppEvolve, a

technique that leverages existing code bases to distill examples of

app updates and create patches that can be applied to other apps. In

our empirical evaluation, we applied AppEvolve to 15 real-world

apps. Our results provide initial but strong evidence of the use-

fulness of our technique, as AppEvolve was able to automatically

update 85% of the API usages considered and automatically validate

68% of these updates.

In future work, we plan to perform a more extensive evaluation

of the approach to confirm our initial results.Wewill also extend the

technique in different ways. First, we plan to handle updates that

span across multiple methods. Second, we plan to automatically

compute API change specifications based on a mix of program

analysis and natural language processing techniques. Third, and

more on the engineering side, we plan to add to the tool the ability

to handle app binaries. Finally, we will investigate the use of our

technique in other contexts (e.g., web applications).
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