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ABSTRACT
A typical automatic program repair technique that uses a test suite
as the correct criterion can produce a patched program that is test-
suite-overfitted, or overfitting, which passes the test suite but does
not actually repair the bug. In this paper, we propose DiffTGen
which identifies a patched program to be overfitting by first gener-
ating new test inputs that uncover semantic differences between
the original faulty program and the patched program, then testing
the patched program based on the semantic differences, and finally
generating test cases. Such a test case could be added to the original
test suite to make it stronger and could prevent the repair technique
from generating a similar overfitting patch again. We evaluated
DiffTGen on 89 patches generated by four automatic repair tech-
niques for Java with 79 of them being likely to be overfitting and
incorrect. DiffTGen identifies in total 39 (49.4%) overfitting patches
and yields the corresponding test cases. We further show that an
automatic repair technique, if configured with DiffTGen, could
avoid yielding overfitting patches and potentially produce correct
ones.
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1 INTRODUCTION
Given a faulty program and a fault-exposing test suite, an auto-
matic program repair technique aims to produce a correct, patched
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program that passes the test suite. Being automatic, such a tech-
nique could potentially save people significant time and effort. Over
the past decade, a variety of automatic repair techniques [5, 9, 13–
15, 20–22, 35–37] have been developed. Current repair techniques,
however, are still far from maturity: they often yield an overfitting,
patched program which passes the test suite but does not actually
repair the bug. Studies [29, 31] have shown that early repair tech-
niques suffer from severe overfitting problems. According to [29],
the majority of patches generated by GenProg [5], AE [35] and
RSRepair [28] are incorrect. More recent techniques look at many
other methods (e.g., using human-written patches [10], repair tem-
plates and condition synthesis [14], bug-fixing instances [13, 15]
and forbidden modifications [32]) for repair. However, their repair
performances are still relatively poor. Within a 12-hour time limit,
the state-of-the-art repair techniques SPR [14] and Prophet [15]
generated patches for less than 60% bugs in a dataset containing
69 bugs, with more than 60% of the patches (the first found ones)
being incorrect.

The low quality of a test suite is a critical reason why an over-
fitting patch might be generated. Unlike a formal specification,
the specification encoded in a test suite is typically weak and in-
complete. Such a weak test suite can harm the performance of an
automatic repair technique. For example, the fault-exposing test
case in the test suite associated with the bugM85 from the Defects4J
dataset [8] simply checks whether a method returns a result with
no exceptions, but does not check the correctness of the result. In
this case, jGenProg (a Java version of GenProg [5]) simply deletes
the erroneous statement (without actually repairing it) to produce
a patched program that passes the test suite. When such a program
is generated, jGenProg would simply accept it as there is no extra
knowledge other than the given test suite to validate its correctness.

In this paper, we propose DiffTGen, a patch testing technique to
be used in the context of automatic program repair. DiffTGen identi-
fies overfitting patches generated by an automatic repair technique
through test case generation. Based on the syntactic differences be-
tween a faulty program and a patched program, DiffTGen employs
an external test generator to generate test methods (test inputs) that
could exercise at least one of the syntactic differences upon execu-
tion. To actually find any semantic difference, DiffTGen instruments
the two programs, runs the programs against the generated test
method, and compares the running outputs. If the outputs are dif-
ferent, DiffTGen reports the difference to the oracle for correctness
judging. If the output of the patched program is incorrect, we know
the patch is overfitting. If a correct output could be provided by the
oracle, DiffTGen would produce an overfitting-indicative test case
by augmenting the test method with assertion statements. (Note
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1 public static boolean toBoolean(String str) {
2 if (str=="true") return true;
3 if (str==null) return false;
4 switch (str.length ()) {
5 case 2: { ... }
6 case 3: {
7 char ch = str.charAt (0);
8 if (ch=='y')
9 return
10 (str.charAt (1)=='e'||str.charAt (1)== 'E')
11 && (str.charAt (2)== 's'||str.charAt (2)== 'S');
12
13 if (ch=='Y')// Changed to "if (str!=null)" (Overfitting Patch)
14 return
15 (str.charAt (1)=='E'||str.charAt (1)== 'e')
16 && (str.charAt (2)== 'S'||str.charAt (2)== 's');
17 // Inserted "return false;" (Correct Patch)
18 }
19 case 4: {
20 char ch = str.charAt (0);
21 if (ch=='t') {
22 return
23 (str.charAt (1)=='r'||str.charAt (1)== 'R')
24 && (str.charAt (2)== 'u'||str.charAt (2)== 'U')
25 && (str.charAt (3)== 'e'||str.charAt (3)=='E');
26 }
27 if (ch=='T') { ... }
28 }
29 }
30 return false;
31 }

Figure 1: The L51 Bug & an Overfitting Patch

that it is not interesting when the running outputs are identical,
since they are not related to any changes the patch makes.)

DiffTGen can be combined with an automatic repair technique
to enhance its performance. After a patch is generated by the repair
technique, DiffTGen may produce a test case showing the patch is
overfitting. Such a test case could be added to the original test suite
to make the test suite stronger. Using the augmented test suite,
the repair technique avoids yielding a category of patches that
have similar overfitting properties, and could potentially produce a
correct patch (See Section 4.2).

The main contributions we make in this paper are as follows:
• We built a patch testing tool DiffTGen which could iden-
tify an overfitting patch generated by an automatic repair
technique through test case generation. The tool is currently
available at github.com/qixin5/DiffTGen.
• We empirically evaluated DiffTGen on a set of 89 patches
generated by four automatic repair techniques for Java: jGen-
Prog [19], jKali [19], Nopol [37], and HDRepair [13] with 79
patches being likely to be overfitting and incorrect. DiffTGen
identified 39 (49.4%) patches to be overfitting with the corre-
sponding test cases generated. With a bug-fixed program as
the oracle, the average time is only about 7 minutes.
• We empirically evaluated the effectiveness of DiffTGen in
the context of automatic repair program. Our results show
that an automatic repair technique, if configured with DiffT-
Gen, could avoid generating overfitting patches and generate
correct patches eventually.

2 OVERVIEW
In this section, we go over how DiffTGen works with an example.
DiffTGen accepts as input a faulty program f aultproд, a patched
program patchproд, a set of syntactic differences ∆syn between the
two programs, and an oracle. A syntactic difference δsyn ∈ ∆syn
is a tuple <f aultstmt , patchstmt> where f aultstmt and patchstmt

are the respective statements in f aultproд and patchproд that are
related to the change. Note that a δsyn could have a null value
for either f aultstmt or patchstmt (but not both) to represent an
insertion or a deletion (if neither f aultstmt nor patchstmt is null,
δsyn is a replacement). In the context of automatic program repair,
a repair technique often produces a patch report containing what
changes it has made, and ∆syn could be obtained by a simple report
analysis. As output, DiffTGen either produces a test case showing
patchproд is overfitting or produces nothing if no such test cases
can be found. (For a generated test case, DiffTGen also produces a
test-case-instrumented version of f aultproд. For testing, one needs
to run this version against the test case. In the instrumented ver-
sion, the original semantics of f aultproд is preserved.) DiffTGen
goes through three stages to produce a test case: Test Target Gen-
eration, Test Method Generation and Test Case Generation. In the
first stage, DiffTGen produces a test target program tarдetproд on
which a test generator works to generate test inputs. In the second
stage, DiffTGen employs a test generator to actually generate test
methods (as test inputs) that uncover semantic differences between
f aultproд and patchproд. In the third stage, DiffTGen produces
test cases, if any, showing patchproд is overfitting based on the
semantic differences.

We use the example shown in Figure 1 to explain the three stages.
The faulty program (in Java) is a real bug (L51) in the Defects4J
bug dataset [8]. The functionality of the program is to convert a
string into a boolean value. The fault-exposing test case from the
test suite associated with the bug invokes the method toBoolean
with the string “tru” as the value for str. Upon execution with
str="tru", the method toBoolean is expected to return false as
the output. However, without the correct return statement inserted
at Line 17, the branch of case 4 is executed where an IndexOut-
OfBoundsException is thrown at Line 25. A patched program that
modifies the if-condition at Line 13 (from ch==‘Y’ to str!=null)
is generated by an automatic repair technique NoPol [37] in the
repair experiments conducted by Martinez et al. [17]. The patched
program now works fine for the input “tru” (it returns false after
executing the return statement starting at Line 14) and passes the
original test suite, but it does not actually repair the bug. For this
example, DiffTGen generates a new test case with the input string
“@es” which exposes a new failure: the expected output is false
but the patched program returns true. With a fixed version of the
program being the oracle, it only took DiffTGen about 3.8 minutes
to generate the test case.

2.1 Test Target Generation
In the first stage, DiffTGen generates a program which we call the
test target program, or tarдetproд, based on f aultproд, patchproд,
and the syntactic differences ∆syn between them. tarдetproд is the
actual program on which a test generator later works to generate
test inputs. It is an extended version of patchproд with dummy
statements inserted as the coverage goals. A test input that is gen-
erated by a test generator with at least one of the coverage goals
satisfied can lead to a differential execution between f aultproд and
patchproд. Such an input is likely to uncover a semantic difference
δsem between the two programs and further expose an overfitting
behavior of patchproд.
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1 @Test public void test078 () throws Throwable {
2 boolean boolean0 = BooleanUtils.toBoolean("@es");
3 }

Figure 2: A Test Method Generated by EvoSuite
1 public static boolean toBoolean(String str) {
2 Object o_7au3e = null;
3 String c_7au3e =
4 "org.apache.commons.lang.BooleanUtils";
5 String msig_7au3e =
6 "toBoolean(String)" + eid_toBoolean_String_7au3e;
7 try {
8 o_7au3e = toBoolean_7au3e(str);
9 FieldPrinter.print(o_7au3e , eid_toBoolean_String_7au3e ,
10 c_7au3e , msig_7au3e , 0, 5);
11 } catch (Throwable t7au3e) {
12 FieldPrinter.print(t7au3e , eid_toBoolean_String_7au3e ,
13 c_7au3e , msig_7au3e , 0, 5);
14 throw t7au3e;
15 } finally {
16 eid_toBoolean_String_7au3e ++;
17 }
18 return (boolean) o_7au3e;
19 }

Figure 3: The Output-Instrumented Version of f aultproд.
1 public static boolean toBoolean(String str) {
2 Object o_7au3e = null;
3 String c_7au3e =
4 "org.apache.commons.lang.BooleanUtils";
5 String msig_7au3e =
6 "toBoolean(String)" + eid_toBoolean_String_7au3e;
7 try {
8 o_7au3e = toBoolean_7au3e(str);
9 addToORefMap(msig_7au3e , o_7au3e );
10 addToORefMap(msig_7au3e , null);
11 addToORefMap(msig_7au3e , null);
12 } catch (Throwable t7au3e) {
13 addToORefMap(msig_7au3e , t7au3e );
14 throw t7au3e;
15 } finally {
16 eid_toBoolean_String_7au3e ++;
17 }
18 return (boolean) o_7au3e;
19 }

Figure 4: The Test-Case-Instrumented Version of f aultproд.

For the example in Figure 1, DiffTGen creates a tarдetproд by
inserting a newly synthesized if-statement before Line 13. The syn-
thesized if-statement (as shown below) contains a dummy statement
as its then-branch.

if (((ch=='Y')&&!( str!=null ))||(!( ch=='Y')&&( str!=null ))) {
int delta_syn_3nz5e_0 = -1; } //A dummy statement

In the context of the program, the if-condition is equivalent to if
(ch!=‘Y’)). In this example, for any input str can exercise the dummy
statement in tarдetproд, it would lead to a differential execution be-
tween f aultproд and patchproд: the execution of f aultproд would
cover the return statement (starting at Line 14) but the execution
of patchproд would not.

2.2 Test Method Generation
In the second stage, DiffTGen employs an external test generator
(we use EvoSuite [4]) to generate test methods (test inputs) for
tarдetproд that can cover at least one of the dummy statements
upon execution. (Note that a test method contains no assertion state-
ments, but a test case does.) For our example, one of the generated
test methods is shown in Figure 2.

A generated test method can exercise a δsyn between f aultproд
and patchproд upon execution, but may or may not be able to
uncover a δsem . To tell whether a test method can uncover a
δsem , DiffTGen creates instrumented versions of f aultproд and
patchproд (called the output-instrumented versions), runs them
against the test method to obtain running outputs, and compares

1 //The output of the faulty program (instrumented)
2 Test Method: test078
3 PRIM_LOC :(E)0,(C)org.apache.commons.lang.BooleanUtils ,(MSIG)

↪→ toBoolean(String)0,(I)0
4 TYPE:Boolean
5 VALUE:false
6
7 //The output of the patched program (instrumented)
8 Test Method: test078
9 PRIM_LOC :(E)0,(C)org.apache.commons.lang.BooleanUtils ,(MSIG)

↪→ toBoolean(String)0,(I)0
10 TYPE:Boolean
11 VALUE:true

Figure 5: The outputs of running the faulty program and
the patched program (both instrumented) against the test
method in Figure 2.

1 @Test public void test078 () throws Throwable {
2 BooleanUtils.clearORefMap ();
3 boolean boolean0 = BooleanUtils.toBoolean("@es");
4 List obj_list_7au3e = (List) BooleanUtils.oref_map
5 .get("toBoolean(String )0");
6 Object target_obj_7au3e = obj_list_7au3e.get (0);
7 assertFalse(
8 "(E)0,(C)org.apache.commons.lang.BooleanUtils ," +
9 "(MSIG)toBoolean(String )0,(I)0",
10 (( Boolean) target_obj_7au3e ). booleanValue ());
11 }

Figure 6: Test Case Generated by DiffTGen

the outputs. In an output-instrumented version of a program (either
f aultproд or patchproд), DiffTGen creates statements that print as
outputs values that can be affected by δsyn .

For our example, DiffTGen creates an output-instrumented ver-
sion of toBoolean shown in Figure 31 (which can be used for
either f aultproд or patchproд). Essentially, the code calls the orig-
inal version of the method at Line 8 (the one shown in Figure 1,
now renamed as toBoolean_7au3e) and prints the returned value
o_7au3e at Lines 9-10. Along with the return value, the code also
prints other values (e.g., one of them is the full class name of the
method c_7au3e) which DiffTGen later uses to retrieve the output
value for producing an assertion statement. If any exceptions are
thrown, DiffTGen would also print the exceptional information
(Lines 12-13). More details can be found in Section 3.3.1.

DiffTGen runs the output-instrumented versions of f aultproд
and patchproд against the test method shown in Figure 2 to obtain
two outputs in Figure 5. (To do so, DiffTGen first removes the test
method’s annotation @Test and runs a class containing a main
method where the test method is called.) The outputs basically
show that for the first execution (indicated by (E)0 at Lines 3&9)
of the toBoolean method in the BooleanUtils class, the return
values (indicated by (I)0 at Lines 3&9) are different: one being false
and the other being true. In the next stage, DiffTGen produces a
test case based on the two different outputs.

2.3 Test Case Generation
In the third stage, DiffTGen compares the two outputs generated in
the previous stage to identify specific values that are different, and
then asks the oracle to tell which is correct. If the value generated
by patchproд is incorrect, DiffTGen determines patchproд to be
overfitting with a test case generated.

Given the generated output strings shown in Figure 5, DiffT-
Gen found that output values (at Lines 5&11) are different and are
comparable since their location properties (the PRIM_LOC values

1The code needs a JDK version higher than 1.5 to compile.
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at Lines 3&9) are the same. DiffTGen then asks an oracle to de-
termine which output value is correct. For this example, we used
the fixed version of the faulty program (the manually fixed ver-
sion available in the Defects4J dataset) and found that the output
value of f aultproд (which is false) is correct but the output value
of patchproд (which is true) is incorrect. (To do so, we created an
output-instrumented version for the fixed version and ran it against
the test method to obtain the expected output. In general, a human
oracle would be needed and DiffTGen needs to be amenable to a
human. We leave the research of involving a human oracle for test
case generation as our future work.)

With the expected output provided by an oracle, DiffTGen cre-
ates a test-case-instrumented version for f aultproд (Figure 4) and
produces a test case (Figure 6) by augmenting the test method with
an assertion statement and other statements for creating the asser-
tion. In the test-case-instrumented version of f aultproд, DiffTGen
saves the reference to the object o_7au3e, the target object whose
value to be asserted, in a static map field oref_map in the class
of toBoolean. In the test case (Figure 6), DiffTGen creates two
statements (Lines 4-6) obtaining the target object and one assertion
statement (Lines 7-10) asserting the value to be false as expected.
More details can be found in Section 3.4. DiffTGen finally reports
the patch to be overfitting with the generated test case as an evi-
dence.

3 METHODOLOGY
In this section, we first give the definition of an overfitting patch,
and then elaborate on the three stages that DiffTGen takes to iden-
tify an overfitting patch with a test case generated.

3.1 The Definition of an Overfitting Patch
Let f aultproд be the faulty program and I be the input domain of
f aultproд. I can be divided into two sub-domains I0 and I1 onwhich
f aultproд has the correct and incorrect behaviors respectively. Let
f ixproд be a correct version of f aultproд that only repairs the bug
and does not contain any new features. Assuming both programs are
deterministic, then we have ∀i0 ∈ I0. f aultproд(i0) = f ixproд(i0)∧
∀i1 ∈ I1. f aultproд(i1) , f ixproд(i1) where we use p (i ) to denote
the program behavior of p on a specific input i . Let patchproд be a
patched program that was generated by a repair technique and can
pass a test suite that f aultproд failed. Assuming patchproд is also
deterministic, then we have ∃i1 ∈ I1.patchproд(i1) = f ixproд(i1).
A repair technique can produce an overfitting patch which does not
actually repair the bug. An overfitting patch (or a patched program)
can be categorized into two types:

• Overfitting-1: The patch repairs some (or even all) of the
incorrect behaviors of the original program but breaks some
of its correct behaviors.
• Overfitting-2: The patch repairs some (but not all) of the
incorrect behaviors of the original program and does not
break any of its correct behaviors.

For a patchproд that is overfitting-1, we have

∃i0 ∈ I0.∃i1 ∈ I1.patchproд(i0) , f ixproд(i0)∧

patchproд(i1) = f ixproд(i1)

For a patchproд that is overfitting-2, we have
∀i0 ∈ I0.patchproд(i0) = f ixproд(i0)∧

∃i10 ∈ I1.∃i11 ∈ I1.i10 , i11∧

patchproд(i10) , f ixproд(i10)∧

patchproд(i11) = f ixproд(i11)

Our definition is consistent with the definition of a bad fix given
by Gu et al. [6]: a bad fix either introduces disruptions (regres-
sions) or does not cover all the bug-triggering inputs or both2. A
patched program that is overfitting-1 introduces regressions and
is not acceptable, but a patched program that is overfitting-2 does
not introduce regressions (though it only makes a partial repair)
and may thus be considered as still valid. DiffTGen can identify a
patched program to be overfitting-1 by finding an input that exposes
a semantic difference between f aultproд andpatchproд and further
showing the semantics ofpatchproд is incorrect while the semantics
of f aultproд is correct3 with the assistance of an oracle. However,
it cannot directly identify a patched program to be overfitting-2.
Identifying such a patched program involves two steps: (1) show-
ing ∃i1 ∈ I1.patchproд(i1) , f ixproд(i1) (Overfitting-2a) and (2)
showing ∀i0 ∈ I0.patchproд(i0) = f ixproд(i0) (Overfitting-2b).
DiffTGen can achieve (1) by finding a test input exposing a semantic
difference between f aultproд and patchproд and further showing
the semantics are both incorrect4. However, it cannot achieve (2)
by proving the patched program contains no regressions.

3.2 Test Target Generation
In the first stage, DiffTGen creates a test target program, or tarдetproд,
based on the syntactic differences ∆syn between f aultproд and
patchproд. tarдetproд is the program on which a test generator
later works to generate test inputs that uncover semantic differ-
ences between f aultproд and patchproд.

DiffTGen creates tarдetproд by extendingpatchproдwith dummy
statements inserted (one for each δsyn ). The inserted dummy state-
ments do nothing but can be detected by a test generator as the cov-
erage goals. DiffTGen inserts dummy statements into tarдetproд
in such a way that at least a dummy statement would be executed if
and only if the execution of f aultproд and patchproд would differ.

For simple cases, where a patching modification δsyn does not
involve modifying an if-condition (e.g., it modifies an assignment),
DiffTGen simply creates a dummy statement and inserts it in front
of the modified statement (for insertion or replacement), or in place
of the deleted statement (for deletion) in patchproд. If a generated
test input can cover the dummy statement upon execution, the input
would cover the modified statement in patchproд but the unmodi-
fied statement in f aultproд, and would thus lead to a differential
execution between f aultproд and patchproд.

The more complicated cases arise when δsyn is related to an
if-statement and effectively modifies an if-condition. (This is a
common situation [18, 25]. In fact, there exist repair techniques
that only look at condition-related bugs [36, 37].) In such cases, it
2In our definition, we consider such a patch to be overfitting-1.
3Note that a patched program is known to have something repaired as exposed by the
original test suite.
4Note that DiffTGen does not find an input showing the semantics of the two programs
are identical but incorrect. Such an input is not directly related to what changes a
patch makes.
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1 int faultprog(int x) {
2 if (x < 999) { x++; } //the faulty statement
3 return x; }
4 int patchprog(int x) {
5 if (x < 1000) { x++; } //the patched statement
6 return x; }
7 int targetprog(int x) {
8 if ((!(x <999)&&(x <1000))||((x <999)&&!(x <1000))){
9 int delta_syn_3nz5e_0 = -1; } //a dummy statement
10 if (x < 1000) { x++; }
11 return x; }

Figure 7: A Test Target Example

might be ineffective just to insert a dummy statement in front of an
if-statement whose condition is modified. Figure 7 is an example
where the faulty program faultprog and the patched program
patchprog are shown at the top and in the middle. The faulty
if-condition x<999 at Line 2 was changed to x<1000 at Line 5. If
DiffTGen simply creates a dummy statement and inserts it before
the if-statement at Line 5 as the coverage goal, then a test generator
could quite possibly end up with finding an input x taking a random
value, say 33, to make the dummy statement covered. However,
such an input can expose no semantic difference between the two
programs.

To address the problem, DiffTGen creates a synthesized if-statement
and inserts it before the modified statement or at the modifica-
tion place in tarдetproд. The new if-statement contains a new if-
condition. It also contains a dummy statement as its then-branch.
The advantage of such a synthesized if-statement is as follows: a gen-
erated test input that can cover the dummy statement would expose
different branch-taking behaviors between the unmodified state-
ment in f aultproд and the modified statement in patchproд. For
example, in Figure 7, DiffTGen creates a synthesized if-statement
starting at Line 8. For the dummy statement at Line 9 to be cov-
ered, a test input x has to satisfy the condition at Line 8 which
is essentially x==999. Such an input can expose different branch-
taking behaviors between f aultproд and patchproд: Given x==999,
f aultproд does not execute its then-branch x++, butpatchproд does.
This input further exposes a semantic difference between the two
programs, the return value of f aultproд is 999, but the return value
of patchproд is 1000.

DiffTGen considers in total 10 different types of modifications
to produce dummy statements to be inserted in tarдetproд. Table 1
shows the 10 cases with code examples. The three casesNon-partial-
if Insertion, Non-partial-if Deletion, and Other Change cover the sim-
ple cases where DiffTGen simply inserts dummy statements into
patchproд to produce tarдetproд. For each of the other cases where
the modification effectively changes an if-condition, DiffTGen cre-
ates a synthesized if-statement to be inserted in patchproд. (Note
that some of the cases can be considered as changing if-conditions.
For example, inserting a partial if-statement if(c)s can be con-
sidered as changing the condition of an if-statement if(false)s
from false to c.) To create a target program, for each δsyn ∈ ∆syn ,
DiffTGen looks at the 10 change cases in the same ordering as listed
in Table 1 (from top to bottom), finds the first change case that is
matched, produces the new statement, and inserts it in tarдetproд.

3.3 Test Method Generation
In this stage, DiffTGen employs a test generator EvoSuite to gen-
erate test methods (test inputs) for tarдetproд with at least one of
the coverage goals satisfied (i.e., with at least one of the dummy

statements covered). Such a test method can exercise at least a δsyn
and can cause the executions of f aultproд and pathproд to differ.
However, the test method may not be able to expose any semantic
difference δsem between the two programs. To determine whether
a test method can expose a δsem , DiffTGen creates instrumented
versions of f aultproд and patchproд, runs the two instrumented
versions against the test method to obtain running outputs, and
compares the outputs. We call such an instrumented program on
which DiffTGen executes to obtain outputs an output-instrumented
program. For the rest of the section, we focus on explaining how to
create an output-instrumented version of a program.

3.3.1 Creating an Output-Instrumented Version. DiffTGen needs
to be able to detect whether a given test run exposes a semantic
change between f aultproд and patchproд. In the simplest case, a
test method (as a test driver) runs a patched method directly and
any difference is seen in the return value of the method. However,
real-world patches are seldom that simple: a test method might
call other methods which in turn call the patched method; the
difference between two executions might not be reflected in the
return value, but might be reflected in a changed field accessible
from an argument passed to the method.

To accommodate these various possibilities, DiffTGen creates
an output-instrumented version of a program by augmenting the
program with printing statements. We assume a patching modifica-
tion is made within a method and a semantic change can propagate
to the “input” and “output” elements of the method. We define the
input elements of a method to be the arguments (including the this
argument) that are passed to the method on entry, and we define the
output elements to be the return value and any exceptions thrown
on exit5. For each δsyn ∈ ∆syn , DiffTGen looks at the input and
output elements of the method that δsyn is involved (also called the
delta-related method), and prints the values of the elements and the
types. (Note that DiffTGen does not print any input argument that
is of a primitive type, a String type, or is passed as a final type, since
a change cannot propagate to such an argument after the method
execution.)

DiffTGen actually calls a printer (FieldPrinter) that we created
to print values and types. For an element that is of a primitive
type or a String type, the printer simply prints its value and type;
For an element that is an array, a list, a set or a map, the printer
creates a list for the element, and prints the list elements in turn;
For an element that is of a Java Throwable type, the printer calls
the toString method and prints the returned string as the value, and
it prints the keyword “Throwable” as the type; For an element that
is of other types, the printer uses Java reflection6 to explore the
structure of the element7 (as an object) and prints the fields in a
depth-first approach for which we use 5 as the maximum depth for
exploration.

At the implementation level, for each delta-related methodmδ ,
DiffTGen creates a stubmethodm′δ whosemethod signature, method
name, and parameter names are equal to those ofmδ . DiffTGen
then renamesmδ . Inm′δ , it creates a statement calling the renamed
5Note that a change can also propagate to a static class field which currently we do
not handle. We consider handling this type of changes as part of our future work.
6We use FieldUtils from the apache package commons-lang3-3.5.
7DiffTGen ignores an element that is declared to be a final or a static type which
usually does not contain a semantic change.
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Table 1: Test Target Generation of 10 Change Cases
change case faultstmt patchstmt targetprog
Partial-if Insertion null if(c){s} patchprog with if(c){dummystmt} inserted before patchstmt
Non-parial-if Insertion null s patchprog with dummystmt inserted before patchstmt
Partial-if Deletion if(c){s} null patchprog with if(c){dummystmt} inserted where faultstmt is deleted
Non-partial-if Deletion s null patchprog with dummystmt inserted where faultstmt is deleted
If-Guard Insertion s if(c){s} patchprog with if(!c){dummystmt} inserted before patchstmt
If-Guard Deletion if(c){s} s patchprog with if(!c){dummystmt} inserted before patchstmt
If-Cond Change if(c1){s} if(c2){s} patchprog with if(!c1&&c2||c1&&!c2){dummystmt} inserted before patchstmt
If-Cond-Else Change if(c1){s} if(c2){s}else{e2} patchprog with if(!(c1&&c2)){dummystmt} inserted before patchstmt
If-Cond-Then Change if(c1){s1}else{e} if(c2){s2}else{e} patchprog with if(c1||c2){dummystmt} inserted before patchstmt
Other Change s1 s2 patchprog with dummystmt inserted before patchstmt

A partial-if-statement does not have an else branch.

mδ in a try statement. After calling mδ , DiffTGen creates state-
ments calling the method FieldPrinter.print to print the input and
output elements ofmδ . In the catch clause, it creates a statement
printing the thrown exception. The printing method accepts six
arguments. The first argument is the element to be printed. The
printer either simply prints the value of the element and its type
or explores the element’s internal structure to print a sequence
of values and the corresponding types. For each value, the printer
also prints the retrieval information showing how the value can be
retrieved from an execution (e.g., indicating the printed value is the
return value of the method in its first execution). For printing the
retrieval information, the printer also accepts as arguments the call
count (which is associated withm′δ ), the class name, the extended
method signature (which is a string consisting of the method signa-
ture ofmδ and the call count), and the property of the element to
be printed (indicating, e.g., it is a return value). The final argument
the printer accepts is the maximum printing depth (we use 5). In
the finally clause, DiffTGen creates a statement increasing the call
count. Inm′δ , DiffTGen also creates other statements that define
variables and return the final result (if needed).

To obtain outputs, DiffTGen creates a test class, copies each test
method (with the annotation @Test removed) to the class, creates a
main method in the class, and calls the main method to run each
test method over the output-instrumented versions of f aultproд
and patchproд. An output is printed in a stylized form so that the
corresponding lines can be easily compared.

3.4 Test Case Generation
In the previous stage, DiffTGen runs the output-instrumented ver-
sions of f aultproд and patchproд against a test method to obtain
running outputs. In this stage, DiffTGen compares the outputs to
identify specific values that are different, and then asks the oracle
to tell which is correct. When the value generated by patchproд is
incorrect, DiffTGen determines patchproд to be overfitting. If a cor-
rect value could be provided by the oracle, DiffTGen performs two
steps to produce a test case: (1) creating a test-case-instrumented
version (for the original f aultproд for which a test case is created)
and (2) augmenting the test method. DiffTGen uses the two steps
mainly to create an assertion in the test case that asserts the value
(that was checked and compared) to be equal to the expected one
provided by the oracle.

3.4.1 Comparing the Running Outputs. DiffTGen compares the
running outputs of f aultproд and patchproд to identify comparable
values that are different8. Two values are comparable if the two
pieces of retrieval information associatedwith the values (indicating

8DiffTGen currently does not produce any test case based on output values that are
not comparable.

how the values can be generated) are identical. More specifically,
DiffTGen goes through the two outputs (as two strings) line by line
in parallel. When the two lines examined both start with VALUE
(e.g., Lines 5&11 in Figure 5), DiffTGen obtains the corresponding
value items which we call the check values. DiffTGen also obtains
the retrieval information by looking at two lines before the current
lines that start with PRIM_LOC. We call the corresponding value
items the loc values. When the two loc values are identical but the
two check values are different, DiffTGen successfully identifies
comparable values that are different, and it provides to the oracle
(1) the test method, (2) the loc value, (3) the two check values, and
(4) the types of the check values (obtained from one line after the
check value lines that start with TYPE). DiffTGen asks the oracle
to determine which value is correct (and if the value types are
different, what is the correct type). If neither is correct, DiffTGen
further asks the oracle to provide a correct value (possibly with a
value type). An oracle may not provide a correct value or a type
(correctness judging between two values might not be easy for a
human oracle). In that case, DiffTGen discards the current check
values and keeps looking for other check values in the outputs.
(For our experiments in Section 4, DiffTGen uses a fixed version of
f aultproд as the oracle.)

3.4.2 Generating a Test Case. Given an expected value (possi-
bly with an expected type) and a loc value used to generate the
value to be asserted, DiffTGen produces a test case mainly by aug-
menting the test method with an assertion statement. To create the
assertion statement, DiffTGen needs to do three things: (1) obtain
the input/output element to be asserted; (2) obtain the value to be
asserted from the input/output element; (3) produce an assertion
statement asserting the value to be equal to the expected value.

(2) and (3) are easy to do. Once an input/output element is avail-
able, DiffTGen parses the loc value to obtain the access path which
it needs to follow to obtain the value to be asserted (or the target
value). With the access path being ready, DiffTGen uses Java reflec-
tion to explore field structure of the element, creates statements
that follow the path to obtain the target value syntactically, and
inserts the statements in the test method. Then DiffTGen simply
creates an assertion statement asserting the target value to equal
to the expected value.

The difficulty lies in (1): how to obtain the input/output element
to be asserted (or the target element). For the simple test method
as shown in Figure 2, the target element (i.e., the return value
boolean0) is syntactically available. In general, however, the target
element might not be syntactically available in the test method:
consider the case where the delta-related method (where a patch-
ing modification is made) is a private method called by a public
method called in the test method. To still be able to syntactically
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obtain the target element in the test method, DiffTGen creates
an instrumented version of f aultproд, which we call the test-case-
instrumented version, that keeps track of the input/output elements
of a delta-related method by storing the elements in a map (as a
static field of the method’s located class). Later, to syntactically ob-
tain an input/output element in the test method, DiffTGen simply
creates a statement that refers to the field map to get the element.

For the rest of the section, we first explain how to create a test-
case-instrumented version of a program, then explain how to aug-
ment a test method to produce a test case.

Creating a Test-Case-Instrumented Version. In a test-case-
instrumented version, the parent class of each delta-related method
contains a static field map named oref_map that stores the input and
output elements of the method. The key of the map is a string con-
sisting of the signature of the delta-related method and a call count
associated with the method (i.e., the extended method signature).
The value of the map is a list of the input/output elements.

Creating a test-case-instrumented version is similar to creat-
ing an output-instrumented version: DiffTGen looks at each delta-
related methodmδ (where a patching modification is made), creates
a stub methodm′δ , renamesmδ , and creates a try-statement within
m′δ where mδ is called. Here, after this method call, instead of
creating statements printing the input/output elements, DiffTGen
creates statements calling a static method addToORefMap it creates
to store the elements in the map oref_map. addToORefMap accepts
two arguments: (1) the extended method signature ofmδ (before
it is renamed, as a key stored in oref_map) and (2) the input/out-
put element (stored in a list as the value of the key). DiffTGen
calls addToORefMap to store in a list the return value, the this ar-
gument, and the method arguments in turn (if an element is not
available, it stores null). Similarly, in the catch clause, DiffTGen
calls addToORefMap to store the thrown exception.

Augmenting the Test Method. Given the expected value pro-
vided by the oracle, the loc value obtained from the running output,
and a test-case-instrumented version created, DiffTGen finally pro-
duces a test case by augmenting the test method. In the test case,
DiffTGen mainly creates statements that (1) syntactically obtain
the target element (i.e., the input/output element to be asserted) by
referring to the static field map (oref_map) created in the test-case-
instrumented version, (2) syntactically obtain the target value (i.e.,
the value to be asserted) by following the access path contained in
the loc value to explore the target element, and (3) assert the target
value to be equal to the expected value.

More specifically, DiffTGen creates a test case whose method
signature is identical to that of the test method and contains an
extra label@Test. In the test case, DiffTGen first creates a statement
clearing the map oref_map contained in the test-case-instrumented
version. Next it copies all the statements from the test method. Next
it creates statements to syntactically obtain the target element by
referring to oref_map using the extended method signature and
the property value it obtained from the loc value (the property
value is actually the index of the target element in the element
list stored in oref_map). Next it creates statements to syntactically
obtain the target value from the target element. Again, when the
target element is not of a primitive, a String, or a Throwable type,
DiffTGen uses Java reflection to explore the structure of the target

1 Object target_obj_7au3e = null;
2 boolean not_thrown = false;
3 try {
4 <CLASS NAME >. clearORefMap ();
5 <TESTING CODE GENERATED BY EVOSUITE >
6 not_thrown = true;
7 fail ();
8 } catch (Throwable t) {
9 if (not_thrown) { fail("Throwable␣Expected!"); }
10 else {
11 target_obj_7au3e =...;//get the input/output element
12 assertEquals(<MESSAGE >, <EXPECTED VALUE >,
13 (( Throwable) target_obj_7au3e ). toString ()); }}}

Figure 8: Augmenting a Test Method with a Throwable

element and follows the access path (contained in the loc value) to
get the target value. Finally, DiffTGen creates a JUnit statement
asserting the target value to be equal to the expected value.

Note that when the element to be asserted is an exception, DiffT-
Gen uses the template shown in Figure 8 to produce a test case.
Essentially, DiffTGen creates a try statement and copies the testing
statements from the test method to the try-body. DiffTGen creates
the augmented statements in the catch clause.

4 EMPIRICAL EVALUATION
To empirically evaluate the effectiveness of DiffTGen, we ask two
questions:
• RQ1: Could DiffTGen identify overfitting patches generated
by automatic repair tools? What is its performance?
• RQ2: Could DiffTGen enhance the reliability of an automatic
repair technique and guide the technique to produce correct
patches?

We conducted two experiments to answer the two questions. We
next show each experiment in turn.

4.1 RQ1
To evaluate the performance of DiffTGen in identifying overfitting
patches, we created a patch dataset containing 89 patches generated
by four automatic repair techniques for Java: jGenProg [19], jKali
[19], NoPol [37] and HDRepair [1]. We manually determined 10
of the patches to be correct and the other 79 patches to be likely
overfitting and incorrect (see Section 4.1.1). We ran DiffTGen on
each patched program and its original faulty program. Our results
show that DiffTGen found 39 out of the 79 patches (49.4%) to be
overfitting with the corresponding test cases generated.

4.1.1 Experimental Setup. Patch Dataset. The current imple-
mentation of DiffTGen is in Java. To evaluate its performance, we
collected all patches generated by four automatic repair techniques:
jGenProg, jKali, NoPol and HDRepair for bugs in the Defects4J
dataset [8] which is commonly used for evaluating an automatic
repair technique for Java. Martinez et al. did an experiment [17]
running three repair tools: jGenProg, jKali and NoPol on the De-
fects4J bugs and generated in total 84 patches. We included all these
patches in our dataset. For patches generated by HDRepair, we
contacted Le et al. (the authors of [13]) and obtained a set of 14
patches (for each of the 14 repaired bugs, we used the first found
patch reported by HDRepair). We also included these patches in our
dataset. Among the 84+14=98 patches, we found 9 patches are syn-
tactically repetitive. We removed them and obtained a final dataset
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Table 2: The Running Result of DiffTGen (#Bugs: 89, #Bugs
that are likely to be incorrect: 79)

Setup∗ Time #SynDiff #SemDiff #Overfitting #Regression #Defective
(Overfitting-1) (Overfitting-2a)

t30_t60 6.9m 72 61 39 34 18
t10_t180 8.0m 73 59 36 32 13
t3_t600 11.4m 73 56 32 28 12
t1_t1800 30.6m 69 48 27 23 8
∗ A running setup is in the form tn1_tn2 where n1 is the number of EvoSuite’s running trials and n2 is the
searching timeout (in seconds) of EvoSuite for each trial. For a running setup, DiffTGen ran the trials in parallel.
Note that DiffTGen cannot identify an Overfitting-2 patch, but can identify a patch to have an Overfitting-2a behavior.

containing 89 individual patches9. It turns out each patch makes
only a small change on only one statement.

Among the 89 patches, we manually determined 10 patches to be
correct by syntactically comparing each of the 89 patches against
the correct human patch (the fixed version) associated with the
bug in the dataset (the syntactic comparisons are easy and the
correctness of these 10 patches are obvious, see our provided links
below for what they are). For the remaining 79 patches, we consider
them as possibly incorrect10.

DiffTGen. To test if a patch is overfitting or not, we ran DiffT-
Gen with the faulty and the patched programs, f aultproд and
patchproд, and the syntactic changes between the two as input.
For a syntactic change, we manually identified the two change-
related statements from f aultproд and patchproд respectively. As
the oracle, we used the human-patched program (the fixed version)
in the Defects4J bug dataset associated with the bug11. For correct-
ness judging, DiffTGen created an output-instrumented version
for a bug’s fixed version and ran it against any test method gen-
erated by EvoSuite twice to mark any printed fields whose values
are inconsistent during the two executions. DiffTGen considers the
marked fields as non-deterministic and does not use them for test
case generation. By using a fixed version of the bug as the oracle,
DiffTGen runs automatically to produce a test case.

DiffTGen employs EvoSuite-1.0.2 to generate test methods. (We
did not use EvoSuite’s functionality to generate assertions in a test
method because we found the generated assertions often do not ex-
pose any semantic differences between f aultproд and patchproд.)
EvoSuite uses an evolutionary search algorithm and allows the
user to specify a searching timeout. For our experiments, as the
default setup, DiffTGen generates test methods by calling EvoSuite
in 30 trials with the searching timeout being 60s for each trial (or
the setup t30_t60). We implemented DiffTGen to run the trials in
parallel. In Section 4.1.2, we compared the performances of DiffT-
Gen running in different setups. We ran all the experiments on a
machine with 8 AMD Opteron 6282 SE processors and 8G memory.

4.1.2 Results. The Performance of DiffTGen. DiffTGen’s
running result can be found in Table 212 (the first row corresponds
to the default running setup). From left to right, the table shows the
running setup (Setup); the average running time in minutes (Time);

9See github.com/qixin5/DiffTGen/tree/master/expt0/dataset for all the 89 patches we
used (including the ones we identified to be correct) and the patches we removed.
10It is not easy to manually determine the correctness of the 79 patches since they are
not syntactically identical to the corresponding human patches (this is a reason why a
tool like DiffTGen is needed). The rate of overfitting patches identified by DiffTGen
(49.4%) is actually a lower bound.
11Note that the human patches only make changes about bug repairs and do not
add any new features for the original bugs. This makes sure a test case generated by
DiffTGen specifies the correct behavior of a bug but not any new features expected.
12 Due to the space limit, we only show a summary of the results in Table 2. The
complete result tables can be found at https://github.com/qixin5/DiffTGen/tree/master/
expt0/result.

the numbers of bugs for which a syntactic difference between
f aultproд and patchproд has been exercised (#SynDiff ); a semantic
difference has been found (#SemDiff ); overfitting-indicative test
cases have been generated (#Overfitting); regression-indicative test
cases have been generated (#Regression); and defective-indicative
test cases (the semantics of the two programs are both incorrect)
have been generated (#Defective). Note that we consider the time
duration of a run to be from the start of the run to the time when an
overfitting-indicative test case is generated or when DiffTGen ter-
minates with no such test case is generated (but we did not actually
stop running DiffTGen until it terminated).

As shown, DiffTGen identified 39 patches to be overfitting (see
Table 3 for what they are) with the corresponding test cases gener-
ated. For 34 patches, DiffTGen generated test cases showing they
contain regressions (i.e., showing the semantics of patchproд is
incorrect but the semantics of f aultproд is correct). For 18 patches,
DiffTGen generated test cases showing they are defective (i.e., both
the semantics of f aultproд and patchproд are incorrect). Note that
DiffTGen can generate two different test cases for patchproд show-
ing it not only contains regressions but also is defective. This ex-
plains why the sum of the last two columns in Table 2 can be greater
than the fifth column. Our results show that DiffTGen is efficient:
it takes about 7 minutes on average to test a patch (with or without
test cases generated).

For 72 (80.9%) patches, DiffTGen found at least a test method for
each patch that exercises the syntactic change between the patched
and the original programs. For the other 17 patches, we found
EvoSuite generated no test method at all for 4 of the patches. This
could happen either because EvoSuite failed to generate anything
within the time limit or because an error occurred during its run.
For the other 13 of the 17 patches, although EvoSuite generated
test methods, they do not exercise the syntactic changes and would
not be useful to reveal any semantic differences. We think the
reason could be that the overall goal of EvoSuite is to generate test
methods to achieve a high coverage of the class under test, and it is
not designed to generate test methods to cover a certain statement
in particular.

A test method that exercises a syntactic change may or may
not reveal a semantic difference. Using the underlying search al-
gorithm of EvoSuite plus the synthesized if-statements created in
the test target, for 84.7% (61/72) of the patches, DiffTGen obtained
test methods that uncover some semantic differences. For 11 of the
72 patches, however, the test methods do not reveal any seman-
tic difference. In general, finding a test that uncovers a semantic
difference between two programs is undecidable: there could be
a large number of paths exercising a syntactic change but only a
small fraction of them may reveal a real semantic difference.

When a semantic difference is found, DiffTGen asks the oracle
for semantic checking. DiffTGen found 34 patches that contain
regressions with the corresponding test cases generated. For 18
patches, DiffTGen generated test cases showing they are defective
(the outputs of f aultproд andpatchproд are both incorrect), though
they may or may not contain regressions.

There are 22 cases where the found semantic differences do not
reveal any overfitting properties of a patch. For 5 cases, DiffTGen
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Table 3: 39 Overfitting Patches Identified by DiffTGen
Repair Tool Bug ID
jGenProg M2, C3∗, M40, C5, M80∗, C15, M78, T4, M8, M95, M81
jKali M32, M2, C13, C26, M40, C5, C15, T4, M95, M81, M80
NoPol C21, L51, L53, M33†, C13, M40, M87, M97, M57, M104, C5, M80∗, M105, M81∗

HDRepair Cl10†, L6†, M50∗†

ID with †: The correct patch exists in the tool’s search space.
ID with ∗: Only defective-indicative test cases were generated.

Table 4: Repair Experiment 0
ID Time #Patch #SynDiff Patch #Correct Patch

M95_jGenProg 1.8m 10 2∗ 0
C15_jKali 28.7m 5 1 0
C26_jKali 81.2m 2 1 0
C13_Nopol 3.3m 10 1 0

M50_HDRepair 88m 7 6 4

∗: The two generated patches are invalid since they do not pass the test cases generated
by DiffTGen. We believe it is a failure of jGenProg.

Table 5: DiffTGen Experiment 0
ID Time SynDiff SemDiff Overfitting Regression Defective

(Overfitting-1) (Overfitting-2a)
C26_jKali 23.4m true true true∗ true false
C15_jKali 22.8m true true true∗ true false
C13_Nopol 11.0m true true false false false

M50_HDRepair0 11.2m true false false false false
M50_HDRepair1 16.7m true true false false false

∗: A following repair experiment shows that jKali failed to produce any patches using the test suite augmented with the
newly generated overfitting-indicative test case.

only produced repair-indicative test cases (we found they corre-
spond to the correct patches, for the other 5 correct patches, DiffT-
Gen does not produce any test cases). For 17 cases, the semantic
differences are not interesting or cannot be leveraged by DiffT-
Gen for semantic checking. For example, the semantic difference
between the faulty program and a patched program generated by
jGenProg (for C7 ) is related to a class field named time whose type
is long. Such a field is time-related, and is not reliable for seman-
tic checking. DiffTGen runs the oracle program twice to identify
such fields and refuses to use them for semantic checking. For this
example, DiffTGen generated no test cases. There are also forms
of semantic changes that DiffTGen currently does not support
for correctness judging. For example, a list has one more element
added in the patched program. Since the values of the new element
added has no loc values matched in the faulty program (see Sec-
tion 3.4.1), DiffTGen would not produce any test case based on the
new element which causes the semantics to be different.

Setup Comparison. DiffTGen employs EvoSuite to generate
test methods. To do so, EvoSuite uses evolutionary algorithms. To
investigate how EvoSuite affects DiffTGen’s results, we compared
the default setup of DiffTGen t30_t60 (i.e., running EvoSuite in 30
trials with the search time of each trial limited to 60s) to three other
setups: t1_t1800, t3_t600, and t10_t180 (we limit EvoSuite’s overall
search time to be 30 minutes to have these setups created). As the re-
sults in Table 2 show, DiffTGen needs to run EvoSuite in more than
one trial to obtain better results. Sacrificing the search time (e.g.,
from 600s to 60s) for more trials (e.g., from 3 to 30) would cause the
number of change-exercised test methods to slightly decrease (from
73 to 72) but would enhance the overall testing performance: the
running time reduces (by about 40%) and the number of generated
overfitting-indicative test cases increases (from 32 to 39).

4.2 RQ2
DiffTGen identified 39 patches to be overfitting with test cases gen-
erated. In the context of automatic program repair, we want to know
whether DiffTGen could work together with an automatic repair
technique to make the repair technique avoid generating overfitting
patches and produce correct patches eventually. So in this exper-
iment, we ran the four repair tools (jGenProg, jKali, NoPol, and

HDRepair) on the 39 bugs for which DiffTGen generated new test
cases showing the original patches are overfitting (we augmented
the corresponding test suites associated with the bugs with the new
test cases). If new patches were generated, we ran DiffTGen again,
and if new test cases were generated, we augmented the test suites
and ran the repair techniques again, so on and so forth.

Figure 9 is a summary of the results. It shows that the repair
techniques with DiffTGen configured avoid yielding any incor-
rect patches for 36 bugs eventually. For 33 of the 36 bugs, we find
that there do not exist correct patches in the repair tools’ search
spaces. So the best the tools can do is to yield no patches, and
DiffTGen makes them achieve that. For 3 of the bugs (M33_Nopol,
Cl10_HDRepair and L6_HDRepair), the corresponding repair tools
could potentially produce a correct patch, but they did not since
their search spaces of patches are too large and the correct patches
were not actually found. For M50, HDRepair eventually produced
four correct patches with the assistance of DiffTGen (see Sec-
tion 4.2.3). For 3 of the 39 bugs (M95_jGenProg, C13_Nopol and
M50_HDRepair), there were incorrect patches generated eventually.
jGenProg produced two invalid patches forM95 which did not pass
the test cases generated by DiffTGen. DiffTGen failed to gener-
ate overfitting-indicative test cases for three patches: C13_Nopol,
M50_HDRepair0 & 1 which are overfitting and incorrect.

4.2.1 Experimental Setup. For each patch in Table 3, DiffTGen
generated an overfitting-indicative test case. We added the test case
to the test suite associated with the bug and obtained an augmented
test suite (if multiple test cases have been generated for a patch, we
added the one showing the patch contains regressions). For each
bug, we next ran the repair technique (the one produced its initial
patch) with the augmented test suite to try to find a new patch. For
each of the four repair techniques, we ran it in 10 trials with the time
limit being two hours for each trial. The original repair experiments
reported in [13] ran HDRepair to repair a bug with a buggy method
provided manually. To be consistent, we provided HDRepair with
same buggy methods provided in [1] for repairing three of the bugs
Cl10, L6, andM50. For any new patches generated, we ran DiffTGen
again to generate new test cases. In this experiment, we used the
default setup of DiffTGen for test case generation. Currently, we do
not have an integrated version of a repair technique and DiffTGen.
So each time we ran a repair technique, we manually added the
newly generated test case to the test suite, and each time we ran
DiffTGen, we manually provided it with the syntactic changes that
the patch makes.

4.2.2 The Potential Of Producing a Correct Patch. We analyzed
the fixed version (the human patch) for each of the bugs listed
in Table 3 and found that for only 4 bugs (marked with †), the
corresponding repair techniques could potentially produce correct
patches. For the other bugs, the correct patches do not exist in the
tools’ search spaces. We find that jGenProg, jKali and NoPol have
their own limitations. jGenProg cannot produce a correct patch
if the fix statements do not exist in the original faulty program.
jKali can only produce patches that remove statements. NoPol can
only repair an if-condition-related bug whose fix needs a simple
change (on only one condition). Compared to the other techniques,
HDRepair could potentially generate correct patches for its three
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Figure 9: The numbers of bugs for which no patches
(expected or unexpected), correct patches, and incorrect
patches were eventually generated. (For M50_HDRepair,
both correct and incorrect patches were generated.)

bugs. Its search space is much larger, but it leverages historical
repair data to make the search guided.

4.2.3 Results. As Figure 9 shows, there are in total 36 bugs for
which no patches were generated by the repair techniques. For
33 of the bugs, the corresponding repair techniques do not have
the abilities in producing correct patches, and the fact that no
patches were eventually generated is expected. For three of the
bugs (M33_Nopol, Cl10_HDRepair and L6_HDRepair), although the
corresponding repair techniques can potentially produce correct
patches, they failed to do so since the search spaces are large and
the correct patches were not actually found.

For 5 of the bugs, there were patches generated by the repair
techniques. In Table 4, the first column shows the bugs and the
repair techniques. The fourth column shows that there were in
total 11 different patches generated. Among the 11 patches, we
found 4 patches generated by HDRepair for M50 are correct: they
essentially remove the faulty statement x0 = 0.5 * (x0 + x1 - delta) (see
https://github.com/qixin5/DiffTGen/tree/master/expt1 for these 4
patches, all the other generated patches and all the generated test
cases). We also found two patches generated by jGenProg for M95
are invalid: they did not pass the test cases previously generated
by DiffTGen. We next ran DiffTGen again for the other five (11-
4-2) patches and the corresponding bugs. As the result shown in
Table 5, DiffTGen identified two overfitting patches, C26_jKali and
C15_jKali, with the corresponding test cases generated. We added
each test case to the bug’s test suite, and then ran jKali to repair
the two bugs again. This time, no patches were generated by jKali.
For the other three patches (C13_Nopol, M50_HDRepair0 & 1), we
believe they are overfitting and incorrect, but DiffTGen did not
produce any overfitting-indicative test cases13.

5 RELATEDWORK
An overfitting patch is indeed a bad fix generated by a repair tech-
nique. The bad fix problem has been studied by Gu et al. [6]. Our
definition of an overfitting patch is consistent with their definition.
Our work is related to existing works (e.g., [38]) that study how
a human-made change becomes a bad fix. In our studied context,
however, a patch is generated by a repair technique, not a human.
The study by Yu et al. [39] investigates whether test case generation
can help a repair technique produce more non-overfitting patches.
Our work is related but focuses on identifying an overfitting patch.

13 Two of the three patches (C13_Nopol &M50_HDRepair0) make changes on statements
created for instrumentation. This could be avoided but involves modifying a repair
technique. In the future, we want to do so and see how the results would change.

DiffTGen is related to TESTGEN [11], DiffGen [33] and BERT
[7, 23] in employing an external test generator for test generation
and comparing the program outputs to identify any semantic differ-
ences. Compared to DiffTGen, these three techniques are used for
identifying regressions. DiffTGen however could identify not only
regressions but also a patch’s other overfitting behaviors. The three
techniques only report to the user any differential behaviors de-
tected. DiffTGen does so but in addition generates actual test cases.
The three techniques were tested on modified programs where the
modifications were randomly seeded or human-made. DiffTGen
was tested in the context of automatic program repair.

DiffTGen is also related to other regression, differential, or patch
testing techniques that are based on symbolic execution. DiSE [27]
combines static program analysis and directed symbolic execution
to find inputs exercising a modification. The differential symbolic
execution technique [26] uses method summaries to characterize
program semantic behaviors. With the support of a theorem prover,
it compares two method summaries to identify semantic differences.
eXpress [34] combines dynamic symbolic execution (DSE) and path
pruning to generate tests revealing program behavioral differences.
KATCH [16] starts with an existing test input and further uses
either symbolic execution or definition switching to generate new
inputs to cover the modified code based on the existing input. The
shadow technique [3, 24] uses concolic execution to find test in-
puts uncovering the semantic differences between two programs.
For each if-condition after a change point in the original program,
the technique tries to find test inputs to force the original and the
patched programs to have different branch-taking behaviors if the
concrete executions do not reveal such behaviors. DiffTGen’s syn-
thesized if-statement has a similar idea, but is only applied to the
changed if-condition, not all the if-conditions affected by a change.
Compared to the above testing techniques, DiffTGen is designed
and has been evaluated in the context of automatic program repair.
It performs differential testing, but goes one step further in produc-
ing test cases. DiffTGen is more lightweight and has been shown to
work fast. Again, it can not only identify regressions but a patch’s
other overfitting behaviors.

DiffTGen is also broadly related to works [2, 12, 30] doing patch
verification. Verification generally means more work than testing,
and may need some sort of correctness criterion. Compared to
such techniques, a testing technique like DiffTGen seems more
appropriate to be used in the context of automatic program repair.

6 CONCLUSION
Automatic program repair techniques often produce overfitting
patches which do not actually repair the bugs. In this paper, we
presented a patch testing technique DiffTGen which could identify
overfitting patches through test case generation. We demonstrated
through experiments the feasibility of using DiffTGen in the con-
text of automatic program repair: DiffTGen can identify about a
half of the overfitting patches with test cases generated in only a
few minutes. An automatic repair technique, if configured with
DiffTGen, could produce less overfitting patches and more cor-
rect patches. Our future work will look at (1) optimizing DiffTGen
with more sophisticated test generation techniques and (2) making
DiffTGen more practical by using a human oracle.
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