
Towards Addressing the Patch Overfitting Problem
Extended Abstract

Qi Xin
Advisor: Steven P. Reiss

Department of Computer Science, Brown University
Providence, RI, USA
qx5@cs.brown.edu

Abstract—Current automatic program repair techniques often
produce overfitting patches. Such a patch passes the test suite but
does not actually repair the bug. In this paper, we propose two
techniques to address the patch overfitting problem. First, we
propose an automatic repair technique that performs syntactic
code search to leverage bug-related code from a code database
to produce patches that are likely to be correct. Due to the weak
and incomplete program specification encoded in the test suite,
a patch is still possible to be overfitting. We next propose a
patch testing technique which generates test inputs uncovering
the semantic differences between a patch and its original faulty
program, tests if the patch is overfitting, and if so, generates test
cases. Such overfitting-indicative test cases could be added to the
test suite to make it stronger.

I. INTRODUCTION

Given a faulty program and a fault-exposing test suite, an
automatic program repair technique [1]–[9] aims to produce a
patch that passes the test suite and is correct in general. Studies
have shown that automatic repair techniques often produce
overfitting patches [10], [11]. As [10] shows, the majority
of patches generated by GenProg [1], AE [2] and RSRepair
[3] are incorrect. Within a 12-hour time limit, the state-of-
the-art repair techniques SPR [4] and Prophet [5] generated
patches for less than 60% bugs with more than 60% of the first
found patches being incorrect. A recent study [12] suggests a
repair technique to leverage information beyond the test suite
to create a targeted search space where a correct patch could
be effectively identified. One idea is to leverage existing code
that is likely to be correct from a code database. SearchRepair
[7] and Code Phage [13] (or CP) are two representatives of
this idea which try to find fix code through semantic code
search. However, semantic code search is often expensive and
time-consuming, and scalability seems to be a concern.

We propose a novel repair technique ssFix which performs
syntactic code search to find code fragments that are similar to
the context of the bug and leverages the syntactic differences
between such a code fragment (as the candidate) and the bug
(with its context) to produce patches. For a similar candidate,
the syntactic differences are small. If the candidate contains
the fix, the search space of patches would be targeted, and a
correct patch can be effectively identified.

In addition to the search space problem, the quality of the
test suite itself is another important reason why an overfitting
patch occurs. Unlike a formal specification, the correctness

encoded in a test suite is often weak and incomplete. To
address the problem, we propose a patch testing technique
DiffTGen that identifies a patch to be overfitting with new test
cases generated. Given a faulty program and a patch, DiffTGen
employs a test generator to generate new test inputs uncovering
the semantic differences between the two programs. DiffTGen
tests the patch based on the semantic differences (for which it
needs an oracle) and produces a test case showing the patch
is overfitting. Such a test case, if generated, could be added
to the original test suite to make it stronger.

The two techniques can be combined to form a repair system
which repeats calling ssFix and DiffTGen for patch generation
and patch testing. Our hypothesis is that the repair system can
effectively mitigate the patch overfitting problem.

II. THE TWO TECHNIQUES

In this section, we elaborate on the two techniques proposed.

A. Automatic Program Repair Technique

The automatic repair technique ssFix works in four stages:
fault localization, code search, patch generation and patch
validation to produce a patch. In the first stage, ssFix employs
a fault localization technique (we use GZoltar [14]) to identify
a suspicious statement that is likely to be faulty to work on.
In the second stage, ssFix generates a code chunk for the
statement including the statement itself and its local context
as a buggy chunk, or 𝑏𝑐ℎ𝑢𝑛𝑘. ssFix extracts structural and
conceptual tokens from the 𝑏𝑐ℎ𝑢𝑛𝑘’s textual content and
employs Lucene [15] to search for code chunks containing
“similar” tokens using the tf-idf vector space model from a
code database consisting of the local code project and an
external large code repository. ssFix considers such similar
code chunks as the candidates, or 𝑐𝑐ℎ𝑢𝑛𝑘s, and tries each to
produce patches for 𝑏𝑐ℎ𝑢𝑛𝑘. In the third stage, ssFix leverages
a 𝑐𝑐ℎ𝑢𝑛𝑘 to produce patches for 𝑏𝑐ℎ𝑢𝑛𝑘 in three steps:
candidate translation, component matching and modification.
In the first step, ssFix translates 𝑐𝑐ℎ𝑢𝑛𝑘 by unifying the
identifier names in the chunk with those in 𝑏𝑐ℎ𝑢𝑛𝑘. In the
second step, ssFix matches the components (statements and
expressions) between the chunks to establish their correlation
and thereby to identify the syntactic differences which may
suggest the correct repair. In the third step, ssFix uses three
types of modifications: replacement, insertion and deletion, to

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.42

490

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.42

490

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.42

490

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.42

492

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.42

488

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.42

489

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.42

489

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.42

489

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.42

489

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.42

489

http://crossmark.crossref.org/dialog/?doi=10.1109%2FICSE-C.2017.42&domain=pdf&date_stamp=2017-05-20

produce patches based on the differences. In the final stage,
ssFix validates the generated patches against the test suite and
reports the first patch, if any, that passes the test suite.

We evaluated ssFix on a subset of the Defects4J bug dataset
[16] containing 93 simple bugs whose fixes require local mod-
ifications within a method and empirically found that ssFix is
more effective than three comparing techniques for Java: jGen-
Prog (the Java version of GenProg), HDRepair [9] and NoPol
[8] in producing more correct patches with the highest non-
overfitting rates (#𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑎𝑡𝑐ℎ𝑒𝑠/#𝑃𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒𝑃𝑎𝑡𝑐ℎ𝑒𝑠).
ssFix produced correct patches for 7 bugs from the Closure-
Compiler project (for which manual fault localization was
performed) and 15 bugs from the other projects with the non-
overfitting rates being 70% and 71.4% respectively.

B. Patch Testing Technique

The patch testing technique DiffTGen accepts as input
a faulty program 𝑓𝑝, a patched program 𝑝𝑝, the syntactic
differences Δ between the two programs, and an oracle as
input. As output, it either produces a test case showing 𝑝𝑝
is overfitting or nothing if no such test case could be found.
DiffTGen works in three stages to generate a test case: Test
Target Generation, Test Method Generation and Test Case
Generation.

In the first stage, DiffTGen produces a test target program 𝑡𝑝
based on 𝑓𝑝, 𝑝𝑝 and Δ with the target statements, or 𝑡𝑠𝑡𝑚𝑡s,
in 𝑡𝑝 specified. For each 𝛿 ∈ Δ, DiffTGen specifies a 𝑡𝑠𝑡𝑚𝑡
in 𝑡𝑝. 𝑡𝑝 is the actual program on which an test generator
works to generate test inputs. A test input that is generated
later has to exercise some 𝑡𝑠𝑡𝑚𝑡 in 𝑡𝑝 to be able to uncover
any semantic difference between 𝑓𝑝 and 𝑝𝑝. 𝑡𝑝 preserves the
semantics of 𝑝𝑝 and is initially a copy of 𝑝𝑝. Depending on
a specific 𝛿, 𝑡𝑠𝑡𝑚𝑡 could be as simple as a statement (e.g.,
a modified assignment) in 𝑡𝑝 or a simple, dummy statement
DiffTGen inserts in 𝑡𝑝 (e.g., for an assignment deleted in 𝑝𝑝,
a dummy statement is inserted in 𝑡𝑝 at the deleting location).
When 𝛿 is related to an if-statement which is common [17],
[18], DiffTGen may produce a “forking” if-statement inserted
in 𝑡𝑝 with a dummy statement as its then-branch being 𝑡𝑠𝑡𝑚𝑡.
A test input exercising 𝑡𝑠𝑡𝑚𝑡 would yield different branch-
taking behaviors related to a modified if-statement between 𝑓𝑝
and 𝑝𝑝. In the second stage, DiffTGen employs a test generator
(we use EvoSuite [19]) to generate test methods (as test inputs)
that can exercise some 𝑡𝑠𝑡𝑚𝑡 in 𝑡𝑝. DiffTGen then creates
instrumented versions of 𝑓𝑝 and 𝑝𝑝 as 𝑓𝑝′ and 𝑝𝑝′. For any test
method, it runs 𝑓𝑝′ and 𝑝𝑝′ against the test method to obtain
outputs and compares them to check whether any semantic
difference exists. If so, in the third stage, DiffTGen finds out
which values are different and asks the oracle which is correct.
If the output of 𝑝𝑝 is incorrect and the oracle could provide
the correct output, DiffTGen produces a test case showing the
patch is overfitting (DiffTGen produces another instrumented
version of 𝑓𝑝 as 𝑓𝑝′′ that is semantics preserving. For testing,
one needs to run 𝑓𝑝′′ against the test case.)

We empirically evaluated DiffTGen on 89 patches (includ-
ing 79 patches that are likely to be incorrect) for the Defects4J

bugs generated by four automatic repair techniques jGenProg,
jKali (the Java version of Kali [10]), NoPol and HDRepair.
DiffTGen identified 39 patches to be overfitting with test
cases generated (we used the fixed version of a bug from the
Defects4J dataset as the oracle). The average running time is
about 7 minutes. We further configured DiffTGen with each
repair technique for patch generation. Our results show that
with the assistance of DiffTGen, the repair techniques avoided
generating any overfitting patches for 36 of the 39 bugs. There
were correct patches (as the first found ones) generated for the
bug Math 50 using HDRepair and DiffTGen.

III. CONCLUSION

To address the patch overfitting problem, we proposed an
automatic repair technique ssFix and a patch testing technique
DiffTGen. We demonstrated the effectiveness of ssFix and
DiffTGen and the feasibility of combining DiffTGen with a
repair technique (as a repair system) to enhance its perfor-
mance.

REFERENCES

[1] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: fixing 55 out of 105 bugs for $8
each,” in ICSE, 2012, pp. 3–13.

[2] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: models and first results,” in ASE, 2013, pp.
356–366.

[3] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in ICSE, 2014, pp. 254–265.

[4] F. Long and M. Rinard, “Staged program repair with condition synthe-
sis,” in ESEC/FSE, 2015, pp. 166–178.

[5] ——, “Automatic patch generation by learning correct code,” in POPL,
2016, pp. 298–312.

[6] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in ICSE, 2016, pp. 691–
701.

[7] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs
with semantic code search (t),” in ASE, 2015, pp. 295–306.

[8] J. Xuan, M. Martinez, F. Demarco, M. Clment, S. Lamelas, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic repair of conditional
statement bugs in java programs,” IEEE Transactions on Software
Engineering, 2016.

[9] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in SANER, 2016, pp. 213–224.

[10] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in ISSTA, 2015, pp. 24–36.

[11] E. K. Smith, E. T. Barr, C. L. Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in ESEC/FSE,
2015, pp. 532–543.

[12] F. Long and M. Rinard, “An analysis of the search spaces for generate
and validate patch generation systems,” in ICSE, 2016, pp. 702–713.

[13] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic
error elimination by horizontal code transfer across multiple applica-
tions,” in PLDI, 2015, pp. 43–54.

[14] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in ASE, 2012, pp. 378–381.

[15] “Apache lucene,” https://lucene.apache.org.
[16] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing

faults to enable controlled testing studies for java programs,” in ISSTA,
2014, pp. 437–440.

[17] K. Pan, S. Kim, and E. J. Whitehead Jr, “Toward an understanding of
bug fix patterns,” ESE, pp. 286–315, 2009.

[18] M. Martinez and M. Monperrus, “Mining software repair models for
reasoning on the search space of automated program fixing,” ESE,
vol. 20, no. 1, pp. 176–205, 2015.

[19] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in ESEC/FSE, 2011, pp. 416–419.

491491491493489490490490490490

