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Abstract—Unit testing plays a pivotal role in safeguarding
functional requirements and supporting the maintainence during
the development of Android applications. The Kotlin program-
ming language emerges in developing Android applications since
Kotlin is considered due to its simplicity, safety, and interop-
erability with Java. It is time-consuming to manually write unit
test cases for Kotlin programs. To mitigate labor costs, automated
unit test generation techniques are developed. However, existing
tools of unit test generation, such as EvoSuite and Randoop,
are primarily optimized for traditional Java projects. This
make these tools incapable of generating test cases for Kotlin
projects in Android. In this paper, we introduce KotSuite, an
automated tool of unit test generation for Kotlin applications in
Android. KotSuite employs static analysis techniques to extract
the syntactic structure of the target methods and transforms
the syntactic structure into control flow representations. Then,
KotSuite automatically generates a suite of test cases using
a genetic algorithm and test reuse. We evaluate KotSuite on
eight modules from four widely-used and open-source Kotlin
projects in Android. Experimental results show that KotSuite
can effectively generate high-coverage test cases with average line
coverage of 66.0% and branch coverage of 60.4%. Additionally,
test reuse in KotSuite can improve the efficiency of test case
generation by 22%.

Index Terms—Kotlin programs, test case generation, Android
applications, test reuse, test tools

I. INTRODUCTION

Android applications are widely used in mobile devices.
Developers are required to meet high standards to avoid
performance issues and security vulnerabilities [1], [2]. Unit
testing can help developers verify the behavior of individual
components and catch bugs in the early stage. The unit testing
is crucial for maintaining the high availability of applications
and for reinforcing the security.

However, it is time-consuming to manually write compre-
hensive unit tests. Automated techniques of test case genera-
tion utilize optimization algorithms to generate unit tests based
on predefined criteria [3]. These approaches can accelerate the
process of test development and save the time of developers.
Previous studies [3]–[5] have shown that automated test gener-
ation can improve testing efficiency and enhance the reliability
by increasing the consistency and accuracy of test cases [6].
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The shift from Java to the Kotlin programming language in
Android application development is reshaping the mobile pro-
gramming landscape. Since 2017, Kotlin has been the recom-
mended language for Android applications by Google [7]. This
benefits from the concise syntax, enhanced safety features, and
interoperability with Java. The support of Kotlin for modern
programming paradigms, such as extension functions and
null safety, improves code readability and reduces common
programming errors, especially those related to null references,
which are among the leading causes of application crashes.
Furthermore, the integration of coroutines in Kotlin offers
developers an efficient and readable approach to asynchronous
programming. This is a crucial aspect of Android development
due to the single-threaded UI framework. All these features in
Android applications make existing tools of test generation not
work for Android Kotlin programs.

Existing automated tools of test case generation, such as
EvoSuite [8] and Randoop [9], are primarily designed for Java
applications. Since the unique language features in Kotlin and
Android are different from Java programs, these existing tools
cannot automatically generate test cases for Kotlin programs.
First, the design of existing tools of test generation heavily rely
on the features of Java programs. For instance, handling null
safety in Kotlin requires a different approach from that in Java.
Java-based tools are generally not equipped to recognize the
null-safe types of Kotlin and may miss potential corner cases
in their test coverage. Additionally, features like extension
functions, which add methods to existing classes without
altering their source code, can lead to unexpected behav-
iors. Second, the complexity of Android applications cannot
be directly handled in existing tools like EvoSuite [8] and
Randoop [9]. The architecture of Android introduces unique
runtime considerations, such as activity life cycle management
and asynchronous tasks. Java-based testing tools typically lack
built-in mechanisms to account for these nuances, making
it difficult to capture issues arising from life cycle events
or concurrent operations. Without adaptation for language
features in KotSuite and the architecture of Android, these
tools may leave critical issues for compiling and coverage.
This adds risks to the reliability and stability of the final result.
Given these limitations, there is a demand for Kotlin-based
tools of test case generation for Android applications.



In this paper, we propose KotSuite, an automated tool of
unit test generation for Kotlin programs in Android based on
a genetic algorithm and test reuse. KotSuite mainly consists of
two phases, the analysis phase and the test generation phase.
First, in the analysis phase, KotSuite incorporates customized
handling for the language syntax in Kotlin, such as exten-
sion functions and null safety, and Android-specific runtime
behaviors like activity life cycle management and coroutine
handling. To support compatibility and test coverage, KotSuite
can model the application functions in both Kotlin and Java
by building a detailed Control Flow Graph (CFG). Second, in
the test generation phase, based on CFGs, KotSuite leverages
a genetic algorithm and test reuse to automatically generate
unit test cases. In the genetic algorithm, KotSuite employs test
mocking to generate test mocks for internal Android objects.
KotSuite employs the test reuse to improve the efficiency of
test generation to avoid the time cost of similar methods under
test. The algorithm of test reuse allows KotSuite to repurpose
previously successfully-generated test cases. The test reuse
algorithm can reduce the computational overhead associated
with generating all test cases.

We evaluate KotSuite on eight modules from four widely-
used and open-source Android projects. Experimental results
show that KotSuite can effectively generate high-coverage test
cases with the average line coverage of 66.0% and the branch
coverage of 60.4%. Additionally, test reuse in KotSuite can
improve the efficiency of test case generation by 22%, and the
average time of generating unit test cases for a single method is
4.2 seconds. The evaluation on eight modules also shows that
KotSuite can support both Java and Kotlin code for Android
applications.

This paper makes the following contributions:

• We propose an automated approach, KotSuite, which
employs a genetic algorithm, test mocking, and test
reuse to generate test cases for syntax features of Kotlin
programs in Android. To the best of our knowledge, this
is the first work of unit test generation for Kotlin projects
in Android.

• We design a method of test case reuse to improve the
efficiency of test generation.

• We evaluate our approach on eight modules from four
open-source Kotlin projects.

• We implement an Android Studio plugin and a command-
line tool for KotSuite. The plugin enables developers to
quickly get started while the command-line tool facilitates
the integration of KotSuite into the CI/CD. The tools and
the experimental data are publicly available.1

II. BACKGROUND AND MOTIVATION

A. Background

Android applications, along with their corresponding tests,
are primarily written in either Java or Kotlin, the two most

1Tools and data are publicly available at https://github.com/Maple-pro/
kotsuite-opendata.

widely used programming languages for Android develop-
ment. These tests can be executed in different environments
depending on the type of testing being performed, either on
the Java Virtual Machine (JVM) or directly on an Android
device [10]. JVM tests are run on a simulated environment or
a local machine, offering developers a faster feedback loop for
code correctness and behavior at the unit or component level.
Device tests are run on actual Android devices or emulators
and can encompass a broader range of test types, including
unit, integration, system, and GUI (graphical user interface)
tests.

In an Android Kotlin project, the identification of relevant
classes and methods for unit testing is crucial to ensure
effective test coverage. Focal classes are those that contain
the core functional logic of the application, which directly
contributes to the business behavior. These classes are the
primary targets for testing. On the other hand, certain classes
are excluded from testing, such as anonymous classes, abstract
classes, data classes, and non-public classes, as they either
serve as auxiliary structures or do not influence the core
application behavior. Similarly, focal methods are the methods
within these focal classes that encapsulate the application’s
essential logic. Methods such as constructors, anonymous
methods, getter and setter methods, and life cycle methods
are excluded from testing because they either do not perform
significant business logic or are automatically managed by
the Android framework. Therefore, focal methods are selected
by filtering out those that fall into these excluded categories,
focusing on methods that require testing for their functional
contributions to the application.

B. Motivation
Automated unit test generation has become increasingly

important in modern software development, especially with the
rapid adoption of continuous integration and delivery practices.
Android applications, particularly those written in Kotlin,
present unique challenges in this area due to their intricate
interactions with the Android framework and the distinct
language features of Kotlin, such as null safety, extension
functions, and coroutines. These features can complicate the
process of generating effective test cases, as they often require
careful handling to accurately represent application behavior.

Existing tools such as EvoSuite [8] and Randoop [9] primar-
ily focus on Java and do not fully address the particularities
of Kotlin and Android. Furthermore, recent advances in deep-
learning-based test generation, as seen in tools like A3Test
[11] and ChatUniTest [12], have shown promise but still face
limitations in handling the specific requirements of Android
applications and Kotlin syntax. Moreover, Android unit tests
must run on the JVM, which necessitates using mock objects
to isolate Android runtime dependencies. Without efficient
mocking and test reuse mechanisms, the testing process can
be both time-consuming and resource-intensive.

The code example of Fig. 1 comes from Android archi-
tecture components at Google.2 The fetchUserProfile

2https://github.com/android/architecture-components-samples.



Fig. 1. Motivating example of test case generation for Kotlin programs.
This function fetches a user profile data asynchronously using coroutines.
The function is designed to work within the Android architecture, including
null safety checks and extension functions.

function fetches a user’s profile data asynchronously using
coroutines. The function includes null safety checks, extension
functions, and is designed to work within Android’s architec-
ture, specifically dealing with nullable data types and coroutine
contexts. Traditional tools like EvoSuite and Randoop faces
difficulties as follows:

• Kotlin-specific null safety. Traditional tools lack built-in
support for null safety and extension functions in Kotlin.

• Coroutines. Traditional tools cannot handle suspend
functions or coroutine context, which are essential in
Kotlin for asynchronous operations.

• Android-specific Behavior. Testing on JVM with An-
droid components often requires mock objects, especially
for networking, which needs to be handled by mock
library.

Motivated by the fact that existing tools of test generation
cannot handle Android context, we design a new tool of test
case generation for Kotlin programs, called KotSuite.

III. THE KOTSUITE APPROACH

A. Overview

Fig. 2 illustrates the overall architecture of the proposed
approach KotSuite. The KotSuite framework is designed to
automatically generate unit test cases for Android Kotlin
projects by integrating both static analysis and evolutionary
algorithms within a customizable tool chain. As shown in
Fig. 2, KotSuite consists of two major phases: the analysis
phase and the test generation phase.

Fig. 2. Overview of the KotSuite approach.

In the analysis phase, KotSuite begins by extracting project-
specific information, including the structure and dependen-
cies required for effective test case generation. This phase
incorporates a customized project static analysis stage, which
leverages the Kotlin processor and Android processor to
accommodate Kotlin-specific syntax and Android framework
constructs. This allows KotSuite to handle Kotlin language
features and Android-specific elements, ensuring compatibility
and efficiency when analyzing Kotlin-based Android applica-
tions.

The test generation phase initiates with two primary meth-
ods for test case generation. The first method uses a Random
Algorithm to produce an initial pool of test cases, serving
as a baseline for further refinement. The second, more so-
phisticated method utilizes an NSGA-II Algorithm (a multi-
objective genetic algorithm) [13], aiming to optimize test case
generation for higher coverage and efficiency. The NSGA-II
Algorithm iteratively refines the initial test cases based on
fitness functions such as line and branch coverage, thereby
improving test quality and coverage metrics.

Throughout the test generation process, KotSuite incorpo-
rates several specialized modules to enhance the effectiveness
and quality of generated tests. These include a coverage
collector to monitor coverage metrics, an assertion generator
to generate assertions within the tests, and a test mocking
module to simulate dependencies and isolate the focal methods
under test. Additionally, a test reuse component is integrated
to leverage previously generated high-quality test cases, re-
ducing redundant computations and increasing test generation
efficiency.

Upon completion of test generation, a test minimization
step is employed to filter out redundant or ineffective test



Fig. 3. Screenshot of the Android Studio Plugin of KotSuite.

cases, resulting in a final set of optimized test cases. KotSuite
outputs these tests along with a comprehensive test cases
and reports, summarizing the generated test coverage and
efficiency metrics.

KotSuite offers a dual-interface approach to testing, with
both an Android Studio plugin [14] and a command-line
tool. Fig. 3 shows the user interface of the plugin. The
Android Studio plugin provides an intuitive interface that
integrates seamlessly with the Android development environ-
ment, allowing developers to quickly adopt KotSuite and start
generating tests with minimal setup. It allows developers to
interactively configure and execute test cases, view coverage
results, and refine test parameters in real-time, facilitating a
smoother workflow [15]. For teams that require flexibility
in how they incorporate testing tools into their development
pipeline, the command-line tool of KotSuite offers robust op-
tions for automation and integration into CI environments. The
command-line tool enables KotSuite to be incorporated into
scripted workflows, allowing for automatic test generation,
execution, and reporting as part of the CI/CD process [16].
This capability is essential for development teams that aim to
maintain high-quality code through automated testing practices
and need testing tools that can adapt to various environments
and workflows [17]. By providing both an IDE plugin and
a command-line tool, KotSuite enhances accessibility and
adaptability, catering to individual developers, as well as teams
with complex integration needs, making it a versatile solution
in automated testing for Android.

B. Analysis Phase

The Analysis Module in KotSuite is specifically designed
to conduct static analysis on Android applications, providing
foundational insights for effective automated testing. This

module processes the bytecode of the target program and its
dependencies, leveraging the capabilities of the Soot frame-
work [18] for Java bytecode analysis. Soot, a widely used
open-source toolkit, facilitates extensive analysis and trans-
formation of Java applications by converting Java class files
into an intermediate representation. Through Soot, the Anal-
ysis Module extracts critical structures such as the abstract
syntax tree (AST) and the control flow graph (CFG) of target
functions, which are essential for understanding code logic and
flow at a granular level.

The control flow graph provides a map of all potential
execution paths within each function, which is crucial for
identifying test cases that cover a variety of scenarios. By
outputting the results in Jimple format [19], a simplified
three-address code representation used by Soot, the Analysis
Module allows the genetic algorithm module in KotSuite to
process and manipulate these structures effectively. Jimple is
particularly advantageous for optimization and static analysis,
as it abstracts complex Java bytecode operations into a simpler,
more manageable format, making it easier for KotSuite to
generate high-coverage test cases efficiently.

With the robust capabilities of Soot in static analysis,
including inter-procedural analysis and data flow analysis,
the analysis phase can detect and account for unique Kotlin
and Android-specific features in the bytecode, laying the
groundwork for comprehensive test generation. This system-
atic approach allows KotSuite to generate tests cases that cover
diverse paths in the code and consider the specific behaviors
and constructs present in Kotlin-based Android applications.

C. Test Generation Phase

The test generation phase in KotSuite is responsible for
generating high-quality unit test cases that achieve substan-
tial code coverage for Android Kotlin projects. This phase
is structured into several key steps and leverages multiple
supporting modules to ensure that generated test cases are
efficient, effective, and capable of maximizing coverage across
the codebase.

Four key modules support this process: coverage collector,
assertion generator, test mocking, and test reuse. The coverage
collector module, implemented using tools like JaCoCo and
Java Instrumentation, collects detailed coverage information
on each test case, which is essential for evaluating fitness in the
NSGA-II Algorithm. The assertion generator module automat-
ically creates assertions based on expected program outputs,
allowing generated test cases to verify program behavior and
detect potential errors. Test mocking enables the simulation of
dependencies within test cases, making it possible to test meth-
ods that interact with external components or services, which
is crucial for thorough coverage of Android applications.
Finally, the test reuse module facilitates the reuse of previously
generated high-quality test cases, reducing redundant iterations
and improving the efficiency of test generation.

The unit-level test code is generated heuristically. Based on
the abstract syntax structure of the bytecode, a preliminary test
code skeleton is constructed, which essentially consists of a



sequence of API calls for the function under test. To create an
initial test code, the module encodes the bytecode and applies
a heuristic optimization algorithm to form a program sequence,
or test code segment. The optimized fitness function comprises
line coverage and branch coverage.

A random heuristic algorithm [20]–[22] generates the initial
test case set, where each test case represents a sequence of
function calls on the function under test. To increase coverage,
the test code undergoes evolutionary generation. Once the pre-
liminary test code is created, further diversity is introduced to
improve coverage. An initial population of test cases is formed
based on the bytecode encoding. The evolutionary computation
model iteratively optimizes the test cases according to the
fitness function, yielding higher coverage. During evolution,
hard-to-cover nodes are identified, and the process iterates
until no new test code segments can be generated.

In test case generation, each individual in the evolutionary
algorithm represents a test case set, with the optimization
objective of maximizing code coverage. The optimization
targets within the algorithm include line coverage and branch
coverage, using the NSGA-II algorithm [17] for evolution.

The test minimization stage in KotSuite is an essential post-
processing step that follows the NSGA-II Algorithm in the test
generation Phase. Positioned as the final operation in the test
generation pipeline, this stage aims to refine the generated
test suite by identifying and removing redundant test cases,
thereby improving the efficiency of regression testing [23] and
reducing execution time without compromising coverage. The
stage works closely with the coverage collector, which records
the line and branch coverage achieved by each test case. By
analyzing the coverage data collected, the test minimization
stage detects duplicate test cases that cover identical execu-
tion paths or reach the same set of lines in the code. This
comparison allows it to systematically prune test cases that
do not contribute new coverage information, resulting in a
more concise and meaningful test suite. This method leverages
techniques similar to those described in [8] for reducing test
redundancy through coverage-based filtering.

1) Coverage Collector: The coverage collector module in
KotSuite plays a pivotal role in gathering coverage data for
generated test cases. Positioned within both the NSGA-II
algorithm and test minimization stages, this module provides
essential feedback that guides the evolutionary search process
and assists in pruning redundant test cases. Specifically, the
coverage collector captures information on line and branch
coverage, which is then utilized in three key ways: calculating
the fitness of individuals in the NSGA-II Algorithm, supplying
coverage details to the test minimization stage to identify
duplicate tests, and generating a comprehensive coverage
report at the end of test case generation.

To implement coverage collection, this module employs
JaCoCo [24] and Java Instrumentation. JaCoCo is an open-
source library for Java code coverage analysis, which pro-
vides detailed metrics on line and branch coverage during
execution. Java Instrumentation, on the other hand, enables
dynamic modification of bytecode at runtime, allowing for a

more flexible and customizable approach to tracking execution
paths. By integrating these tools, KotSuite effectively captures
the necessary coverage data to optimize the generated test suite
both in terms of coverage completeness and efficiency.

2) Assertion Generator: The assertion generation module
is an integral component of the KotSuite framework, re-
sponsible for automatically generating assertions within test
cases. Assertions serve as key elements in validating the
correctness of the system under test, ensuring that the actual
behavior of the application conforms to its expected behavior.
The implementation of the assertion generation module is
based on a combination of dynamic execution [25] and Java
instrumentation API. It identifies key conditions and properties
that must hold true during test execution. The module analyzes
the dynamic execution of the code, particularly monitoring
method invocations, variable states, and data flow throughout
the program. Using Java instrumentation, the module can
inject hooks into the bytecode, enabling it to observe and
manipulate the program’s execution in real-time. Based on
this execution data, the module generates assertions that assert
the correctness of specific values, control flow outcomes, and
system behaviors.

3) Test Mocking Module: The test mocking module in
KotSuite is essential for creating mock objects that simulate
dependencies within generated test cases. Positioned within the
test generation phase, this module enables KotSuite to handle
Android-specific dependencies by generating mock instances,
thereby isolating the target methods from the Android runtime
environment. This isolation is crucial because Android unit
tests are executed on the JVM rather than on an actual Android
device or emulator, where certain Android APIs are not
available. Consequently, using mock objects allows KotSuite
to test Android application logic in isolation from platform-
specific implementations, ensuring that generated test cases
achieve comprehensive coverage while remaining compatible
with the JVM-based test environment.

The test mocking module is implemented using
MockK [26], a widely used library for creating mock
objects in Kotlin. MockK offers powerful features, including
mocking of classes, functions, and coroutines, which are
frequently used in Android applications. By leveraging
MockK, KotSuite can simulate complex dependencies and
interactions, such as database operations, network requests,
and lifecycle-based events, without requiring access to actual
Android runtime components. To enable the creation of mock
objects at the bytecode level using the MockK framework,
KotSuite creates a customized library named JmockK [27].
The JmockK library facilitates seamless integration between
bytecode-level analysis and mock object generation, allowing
KotSuite to generate mock objects that can interact directly
with the bytecode representations of Android application
classes. By leveraging JmockK, KotSuite ensures that mock
objects are compatible with the bytecode manipulation
required for thorough and accurate test generation.

4) Test Reuse Module: During the process of generating test
code segments, KotSuite encodes and indexes high-quality test



Algorithm 1 Algorithm of test reuse in KotSuite
Input TargetFunction, ExternalVaribales, TestCaseLibrary
Output Updated TestCaseLibrary and generated test cases

1: function GENERATETESTCASES:
2: Initialize: InitialPopulation ← []
3: for each testCase in TestCaseLibrary do
4: if Match(TargetFunction.Features,

testCase.FunctionFeatures)
5: parameters ← ExtractParameters(testCase)
6: apiCalls ← ExtractAPICalls(testCase)
7: newTestCase ← AssembleTestCase(

parameters, apiCalls)
8: InitialPopulation.append(newTestCase)
9: end for

10: if InitialPopulation.Size < POPULATION SIZE then
11: InitialPopulation ← GenerateRandomPopulation()
12: end if
13: for iteration = 1 to MAX ITERATIONS do
14: ApplyGeneticAlgorithm(InitialPopulation)
15: for each testCase in InitialPopulation do
16: if IsHighQuality(testCase) then
17: TestCaseLibrary.append(testCase)
18: end if
19: end for
20: if CheckStopCondition() then
21: Break
22: end if
23: end for
24: end function

cases that have already been produced, establishing a reusable
test dataset that can streamline future test generation tasks.
This approach allows KotSuite to leverage previously validated
test cases, saving resources and reducing the redundancy
associated with generating new tests from scratch. By building
a test reuse dataset, KotSuite enhances both the efficiency of
test case generation and the overall test coverage across diverse
application modules.

The primary objective of test case reuse is twofold: to
accelerate the generation process by reusing pre-validated test
patterns and to broaden the scope of testing by reapplying ef-
fective test cases to similar functions or components. Reusing
test cases is particularly valuable in complex applications,
where high-quality tests often reveal intricate control flows
and edge cases that may be relevant across multiple modules.
Studies have shown that test reuse can improve coverage while
reducing the time required for test generation, making it a
critical strategy in automated testing for large projects.

By incorporating this reuse strategy, KotSuite optimizes the
test creation pipeline, allowing developers to focus resources
on generating unique test cases only when necessary. This
approach enhances efficiency and contributes to the robustness
and reliability of the final software product.

Algorithm 1 shows how the test reuse algorithm is applied in
the genetic algorithm. The input of the algorithm contain three
parameters, including TargetFunction (the focal method
to be tested), ExternalVariabales (external variables
on which the function depends), and TestCaseLibrary

Fig. 4. Two test cases generated by KotSuite for the example in Fig. 1.

(library of high-quality, reusable test cases).
The algorithm iterates through TestCaseLibrary to

identify previous generated test cases with function features
matching TargetFunction. The FunctionFeature
component encapsulates key characteristics of the target
function to be tested, such as the external variables used
within the function and its parameters. These features are
extracted during the static analysis phase and serve as input
for the test generation process, helping the genetic algo-
rithm focus on relevant aspects of the function. When a
match is found, it extracts the input parameters and API
call sequence from the matching test cases to create new
test cases in the InitialPopulation. If the size of the
InitialPopulation is less than POPULATION_SIZE,
the algorithm generates new test cases by random strategy util
the size reaches the target.

The algorithm then iterates through a genetic algo-
rithm iteration, refining the InitialPopulation by ap-
plying selection, crossover, and mutation operations. The
IsHighQuality() function evaluates whether the gener-
ated test cases meet a threshold of 60% coverage. This thresh-
old applies to both line and branch coverage and ensures that
only tests that contribute meaningfully to coverage are retained
in the final test suite. Following each iteration, high-quality
test cases are appended to TestCaseLibrary, expanding
the library with validated, reusable test cases.

The algorithm terminates when a predefined stopping con-
dition is met. The output is an updated TestCaseLibrary,
now enriched with a broader set of optimized test cases



that can support future test generation tasks. This approach
improves efficiency by reusing existing, validated test cases
where applicable, while ensuring high coverage and robustness
through targeted genetic optimization. Fig. 4 shows two test
cases that are automated generated by KotSuite for the method
from the example in Fig. 1.

D. Implementation

The KotSuite framework primarily utilizes the following
open-source libraries.

• Soot.3 This library enables program static analysis, pro-
viding foundational support for static analysis capabilities
in KotSuite.

• JaCoCo.4 This library powers the coverage collector
module in KotSuite, enabling the collection and calcu-
lation of test case coverage metrics.

• MockK.5 KotSuite builds upon this library by develop-
ing the JMockK library6 to mock code dependencies,
allowing accurate unit testing in the Java Virtual Machine
environment.

• Fernflower.7 This library facilitates bytecode-to-Java
conversion within KotSuite, producing final Java test case
outputs from generated bytecode.

IV. EVALUATION SETUP

A. Research Questions

We design three Research Questions (RQs) to evaluate the
effectiveness and efficiency of KotSuite.

RQ1. How effective is KotSuite in generating unit test
cases for real-word Android Kotlin projects? KotSuite aims
to provide a framework of test generation specifically tailored
for Android Kotlin projects. This RQ seeks to determine
whether KotSuite can fulfill its intended role as a practical
and effective test generation tool.

RQ2. Can the genetic algorithm and test mocking
components improve the coverage of generated test cases?
KotSuite generates high coverage test cases by incorporating
a genetic algorithm and test mocking components specifically
designed to optimize test generation coverage. This RQ is
designed to check the effectiveness of these components in
real-world scenarios.

RQ3. Does the test reuse algorithm in KotSuite enhance
the efficiency of test case generation? In automated test gen-
eration, efficiency is a key factor, especially when large-scale
applications require extensive and complex test cases. This
research question addresses the need to evaluate whether this
approach effectively improves the efficiency of test generation
without sacrificing the quality of coverage.

3https://soot-oss.github.io/soot/
4https://www.eclemma.org/jacoco/
5https://mockk.io/
6https://mvnrepository.com/artifact/io.github.Maple-pro/JMockK
7https://github.com/fesh0r/fernflower

B. Experiment Setup
To assess the effectiveness and efficiency of KotSuite, we

conducted an experiment in which we investigated the code
coverage of test cases generated by KotSuite as well as the
time cost of test case generation. Specifically, we compared
the impact of different modules within KotSuite on both test
case coverage and generation efficiency. To perform the study,
we selected the four Android applications with the highest
number of functions to be tested from different categories on
F-Droid [28], all of which are also available on GitHub [29],
each from different category. Table I summarizes the properties
of these case study subjects. The CineLog project is purely
written in Java and does not contain any Kotlin code. This is
to verify that KotSuite can be applied to both Kotlin and Java
programs. The experiments were conducted on a system with
64GB of memory.

For each Android project, we randomly selected two mod-
ules for the experiment based on the number of focal methods.
The number of focal classes and focal methods in each module
is shown in Table II.

The genetic algorithm is influenced by a great number of
parameters [30]. In this experiment, we employed a genetic
algorithm to generate unit test cases, with the goal of op-
timizing code coverage. The key parameters for the genetic
algorithm were set as follows: the mutation rate was set to
0.5, meaning that half of the selected individuals underwent
mutation during each generation, promoting diversity in the
population and enabling the algorithm to explore a wider range
of solutions. The crossover rate was set to 0.5, ensuring that
half of the pairs of selected individuals underwent crossover
to combine their genetic information and potentially generate
better offspring. This balance between mutation and crossover
is intended to maintain diversity while also fostering the
generation of higher-quality solutions. The maximum number
of iterations was set to 10, meaning that the algorithm would
terminate after 10 generations, ensuring a sufficient amount of
exploration while preventing excessive computational cost.

To assess the effectiveness of the genetic algorithm, the
fitness function was designed to optimize test case coverage,
specifically focusing on line and branch coverage as the pri-
mary objectives. The population size was set to 100, ensuring
a large enough pool of candidates to effectively explore the
solution space while maintaining manageable computational
complexity. The algorithm was initialized with a randomly
generated population of test cases, and each generation was
evaluated based on its ability to cover untested paths in
the code. The test cases evolved over successive generations
through selection, crossover, and mutation, with the aim of im-
proving coverage and ensuring the robustness of the generated
tests.

V. EVALUATION RESULTS

A. RQ1. How effective is KotSuite in generating unit test cases
for real-word Android Kotlin projects?

To evaluate the effectiveness of KotSuite in generating unit
test cases for real-world Android Kotlin projects, we con-



TABLE I
OVERVIEW OF THE FOUR ANDROID APPLICATIONS IN THE EVALUATION

Application Category #Stars #Focal classes #Focal methods Percentage of Kotlin code
Ad-Free Internet 273 241 1380 99.3%
GPSTest Navigation 1775 380 1925 68.7%
CineLog Multimedia 47 288 1758 0%

WiFiAnalyzer Connectivity 3483 276 1708 97.3%

TABLE II
LINE COVERAGE AND BRANCH COVERAGE OF TEST CASES GENERATED UNDER DIFFERENT APPROACHES (LINE COVERAGE / BRANCH COVERAGE )

Application Module #Focal #Focal KotSuite * KotSuite variant
classes methods Without GA Without reuse Without mocking

Ad-Free ch.abertschi.adfree.detector 46 255 53.4% / 54.9% 37.5% / 22.2% 53.4% / 54.9% 9.2% / 12.4%
ch.abertschi.adfree.model 25 201 44.4% / 64.3% 28.7% / 19.0% 44.4% / 64.3% 10.0% / 23.1%

GPSTest com.android.gpstest.util 7 39 83.2% / 78.4% 61.9% / 66.6% 83.2% / 78.4% 6.9% / 6.4%
com.android.gpstest.io 8 51 61.1% / 52.9% 52.6% / 44.7% 61.1% / 52.9% 9.4% / 8.1%

CineLog com.ulicae.cinelog.data.dao 69 689 68.5% / 56.6% 63.4% / 50.9% 68.5% / 56.6% 6.8% / 5.2%
com.ulicae.cinelog.utils 18 57 76.1% / 62.4% 59.3% / 36.9% 76.1% / 62.4% 13.3% / 10.5%

WiFiAnalyzer com.vrem.wifianalyzer.wifi.graphutils 20 133 75.5% / 73.2% 52.8% / 36.8% 75.7% / 73.2% 11.2% / 19.8%
com.vrem.wifianalyzer.wifi.model 65 261 79.5% / 64.5% 59.8% / 44.6% 79.5% / 64.5% 9.2% / 7.6%

Average - - - 66.0% / 60.4% 53.5% / 40.4% 66.0% / 60.4% 8.6% / 10.2%
*The percentage on the left indicates the line coverage while the percentage on the right indicates the branch coverage.

ducted experiments on eight Android Kotlin modules. These
modules were selected from a variety of Android applications
to ensure diversity in the test cases generated. For each
module, we utilized KotSuite to automatically generate test
cases and then measured both the line coverage and branch
coverage achieved by the generated test cases.

The results of the experiment are summarized in Table II,
where we present the average line and branch coverage for
each module. As shown, KotSuite was able to achieve an
average line coverage of 66.0% and branch coverage of 60.4%
across the 8 modules. The highest coverage achieved was
83.2% for line coverage and 78.4% for branch coverage in the
com.android.gpstest.util module, which had a rel-
atively simple code structure. In contrast, more complex mod-
ules such as ch.abertschi.adfree.detector and
ch.abertschi.adfree.model exhibited slightly lower
coverage, with average line and branch coverage of around
55%.

KotSuite was specifically designed to support both Kotlin
and Java languages within Android projects. Our evaluation
results confirmed that KotSuite can seamlessly handle both
Kotlin and Java code. In projects written mostly in Kotlin,
such as Ad-Free and WiFiAnalyzer projects, KotSuite was
able to effectively generate test cases and achieve comparable
coverage metrics to those obtained in Java-based modules.
For example, in the WiFiAnalyzer project, KotSuite achieved
78.1% line coverage and 67.4% branch coverage, demonstrat-
ing its effectiveness even with Kotlin-specific features such as
coroutines and null safety.

Overall, the experimental results indicate that KotSuite is
effective in generating unit test cases for real-world Android
Kotlin projects. The coverage makes the tool a valuable
addition to the Android development workflow.

Fig. 5. Box-plots for line coverage and branch coverage of three versions of
KotSuite.

B. RQ2. Can the genetic algorithm and test mocking compo-
nents improve the coverage of generated test cases?

In this section, we evaluate the impact of the genetic
algorithm and test mocking components in KotSuite on the
effectiveness and efficiency of test case generation. To address
this research question, we conducted experiments using eight
Android Kotlin modules. For each module, we measured both
line coverage and branch coverage of the generated test cases,
along with the time taken for test case generation. Addition-
ally, we performed ablation experiments by removing key
components from KotSuite, specifically the genetic algorithm
and test mocking modules, to assess their contribution to test



TABLE III
AVERAGE TIME PER FUNCTION TAKEN BY DIFFERENT APPROACHES FOR TEST CASE GENERATION (IN SECONDS)

Application Module KotSuite KotSuite variant
Without GA Without reuse Without mocking

Ad-Free ch.abertschi.adfree.detector 3.4 1.6 4.9 3.5
ch.abertschi.adfree.model 4.2 1.4 5.0 3.9

GPSTest com.android.gpstest.util 3.7 1.2 5.4 3.8
com.android.gpstest.io 3.4 1.4 5.7 3.3

CineLog com.ulicae.cinelog.data.dao 4.7 1.4 5.8 4.4
com.ulicae.cinelog.utils 4.3 1.3 5.4 4.6

WiFiAnalyzer com.vrem.wifianalyzer.wifi.graphutils 4.2 1.8 5.7 4.3
com.vrem.wifianalyzer.wifi.model 3.8 2.1 4.9 4.1

Average - 4.2 1.6 5.4 4.1

case coverage and efficiency.
The experimental setup consisted of three configurations.

KotSuite uses both the genetic algorithm and test mocking
components, representing the complete test generation pipeline
in KotSuite; KotSuite without GA replaces the genetic algo-
rithm with a simple random algorithm to generate test cases;
KotSuite without mocking removes the test mocking module
and new objects were instantiated directly in the generated test
cases instead of using mock objects.

For each configuration, we measured the line coverage,
branch coverage, and average time taken to generate test
cases for the target methods. The results of the experiment
are summarized in Table II and Table III. Fig. 5 shows the
significance of both the genetic algorithm and test mocking
components in improving test case coverage. For example,
in the com.vrem.wifianalyzer.wifi.graphutils
module, KotSuite achieved 75.5% line coverage and 73.2%
branch coverage. However, when the genetic algorithm was
removed, the coverage dropped significantly to 52.8% line
coverage and 36.8% branch coverage. Similarly, when the test
mocking module was removed, the coverage declined to 11.2%
line coverage and 19.8% branch coverage. These findings
suggest that both the genetic algorithm and test mocking
module are essential in ensuring high coverage.

In contrast, the random algorithm used in the absence of
the genetic algorithm resulted in lower coverage, as it lacked
the optimization mechanisms that the genetic algorithm pro-
vides to prioritize high-coverage test cases. The test mocking
component uses mock objects to replace real objects, such as
internal Android objects. Since the unit test cases run on JVM
and lack the Android runtime environment, the absence of the
test mocking component resulted in the failure of most test
cases. As a consequence, the coverage of the generated test
cases was significantly reduced.

While the coverage was reduced when the genetic
algorithm or test mocking module was removed, the
time taken for test case generation improved. In the
com.vrem.wifianalyzer.wifi.graphutils mod-
ule, generating test cases with KotSuite took 4.2 seconds per
method, while removing the genetic algorithm reduced the
time to 1.8 seconds. When the test mocking module was
removed, the time decreased to 4.3 seconds. These results

demonstrate that while the genetic algorithm and test mocking
contribute significantly to the coverage, they also introduce
additional computational complexity. Removing these compo-
nents leads to faster test case generation, albeit at the expense
of reduced test coverage.

The experimental results confirm that both the genetic
algorithm and test mocking components in KotSuite effectively
improve the coverage of generated test cases. The genetic
algorithm optimizes the test case selection process, ensuring
that high-impact code paths are prioritized, while the test
mocking component ensures that the generated test cases can
execute correctly on JVM by substituting real objects with
mock objects. While the removal of these components leads to
faster test generation times, it comes at the cost of significantly
reduced coverage. These findings validate the importance of
these components in KotSuite for achieving a balance between
high coverage and efficient test case generation.

C. RQ3. Does the test reuse algorithm in KotSuite enhance
the efficiency of test case generation?

In this section, we evaluate the impact of the test reuse
algorithm in KotSuite on the efficiency of test case generation.
To address this research question, we conducted experiments
using eight Android Kotlin modules. These modules were
selected from a variety of applications to assess the overall
performance of the test reuse algorithm in enhancing the effi-
ciency of test case generation without affecting the coverage
of the generated test cases.

The experiment was conducted using two configurations.
KotSuite uses all components of KotSuite, including the test
reuse algorithm, the genetic algorithm, and the test mocking
module. KotSuite without reuse disables the test reuse mod-
ule, leaving the genetic algorithm and test mocking module
active. In this configuration, the genetic algorithm generates
test cases without reusing previously generated high-quality
test cases.

For each configuration, we measured the average time taken
to generate test cases for the target methods, as well as the
line and branch coverage of the generated test cases. The
results of the experiment are summarized in Table II and
Table III. The results show that removing the test reuse module
from KotSuite did not lead to any significant change in the
coverage of the generated test cases, and indicate that the test



reuse algorithm does not impact the effectiveness of test case
generation in terms of coverage.

The most significant difference between the two con-
figurations was observed in the time taken for test case
generation. As shown, the average time to generate test
cases for a single target method without the test reuse
algorithm is 5.4 seconds. With the test reuse algorithm
enabled, this time is reduced to 4.2 seconds, repre-
senting a 22% improvement in efficiency. For example,
in the com.vrem.wifianalyzer.wifi.graphutils
module, the time taken to generate test cases with KotSuite
was 4.2 seconds, while the time was increased to 5.7 seconds
when the test reuse module was removed. This increase in
time demonstrates that the test reuse algorithm contributes to
the efficiency of test case generation by reusing previously
generated high-quality test cases, thus avoiding redundant
iterations in the genetic algorithm. By reusing test cases,
KotSuite reduces the need for repeated exploration of the same
code paths, speeding up the overall test generation process.

The experimental results confirm that the test reuse algo-
rithm in KotSuite enhances the efficiency of test case genera-
tion by reducing the time needed to generate test cases. While
removing the test reuse module did not affect the coverage
of the generated test cases, it led to a noticeable increase in
the time taken for test case generation. These findings validate
the effectiveness of the test reuse algorithm in speeding up the
test case generation process by reusing high-quality test cases
from previous iterations. This demonstrates the importance of
the test reuse module in KotSuite for improving the efficiency
of automated test generation in real-world Android Kotlin
projects.

VI. THREATS TO VALIDITY

We present the threats to the validity of our work.
Construct validity. A potential source of bias in the

evaluation results is the lack of consideration for the impact
of different parameter settings on the algorithm performance.
In our experiments, we fixed certain parameters, such as
the mutation rate, crossover rate, and maximum number of
iterations, without exploring how these settings might influ-
ence the efficiency and effectiveness of test case generation.
The genetic algorithm is highly sensitive to these parameters.
Further studies should conduct experiments with different
parameter configurations to better understand their impact on
performance.

External validity. The limited generalization of KotSuite is
a potential threat. The reason is that the tool currently operates
exclusively on Android applications built with Kotlin and Java.
This lack of cross-platform applicability means that KotSuite
may not effectively generate test cases for applications written
in other languages or designed for non-Android environments.
Techniques in KotSuite can be expanded to support other
platforms and programming languages in future.

VII. RELATED WORK

Unit test generation based on program analysis. These
tools focus on leveraging static or dynamic analysis of source

code or bytecode to automatically generate test cases. Notable
tools in this area include EvoSuite [8] and Randoop [9], which
have been widely adopted for automated test generation in
Java-based projects. EvoSuite is a popular test case generation
tool that uses evolutionary algorithms to generate test suites
with high code coverage. It generates high-coverage unit tests
by first randomly creating a population of tests and then
iteratively evolving them using genetic algorithms. Randoop is
another widely used tool, generates unit tests by systematically
invoking methods on the target classes and inferring input
values. It uses feedback from execution results to refine
the generated tests, often focusing on producing tests that
satisfy specific coverage criteria such as method, branch, or
exception coverage. The application of EvoSuite and Randoop
in Android Kotlin projects has been limited due to language-
specific features and Android runtime environment. Tools
like EvoSuite and Randoop do not support Kotlin-specific
constructs or the Android framework, which complicates the
test generation process for modern Android applications.

Unit test generation based on deep learning. These
approaches leverage advances in natural language processing
and machine learning to generate test cases that are context-
aware and tailored to the underlying logic of the program [31].
A3Test [11] is a notable deep-learning-based test generation
tool that utilizes a PLBART model [32] to automatically gen-
erate unit tests for software applications. By training on a large
corpus of existing test cases and program code, A3Test learns
to predict the most likely test inputs and corresponding outputs
for given functions. ChatUniTest [12] is a deep learning ap-
proach that focuses on using large language models to generate
unit tests by interpreting program code in a manner similar
to how chat bots generate conversational text. While deep-
learning-bashes like A3Test and ChatUniTest show potential
for improving the quality and relevance of generated tests, they
are still in the early stages of development and are not yet as
widely applicable or reliable as traditional program-analysis-
based methods. Furthermore, they often require large datasets
for training, and their effectiveness can vary significantly
depending on the domain and the complexity of the software
being tested.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced KotSuite, an automated
tool of unit test generation for Kotlin programs in Android
projects. The evaluation demonstrates that KotSuite can help
save the time cost of manually writing test cases. The imple-
mentation of KotSuite provides and an Android Studio plugin
and a command-line tool.

In future work, we aim to extend the capability of KotSuite.
First, we plan to enhance the test case generation process
by incorporating adaptive mutation and crossover strategies.
Second, we intend to explore the integration of KotSuite with
other programming languages and platforms, broadening its
applicability beyond Android and Kotlin.
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