
Better Code Search and Reuse for
Better Program Repair

Qi Xin
Georgia Institute of Technology

Atlanta, GA, USA

qxin6@gatech.edu

Steven P. Reiss
Brown University

Providence, RI, USA

spr@cs.brown.edu

Abstract—A branch of automated program repair (APR) tech-
niques look at finding and reusing existing code for bug repair.
ssFix is one of such techniques that is syntactic search-based: it
searches a code database for code fragments that are syntactically
similar to the bug context and reuses such code fragments to
produce patches. The keys to its success lie in the approaches
it uses for code search and code reuse. We investigated the
effectiveness of ssFix using the Defects4J bug dataset and found
that its code search and code reuse approaches are not truly
effective and can be significantly improved. Motivated by the
investigation, we developed a new repair technique sharpFix
that follows ssFix’s basic idea but differs significantly in the
approaches used for code search and code reuse. We compared
sharpFix and ssFix on the Defects4J dataset and confirmed
through experiments that (1) sharpFix’s code search and code
reuse approaches are better than ssFix’s approaches and (2)
sharpFix can do better repair. sharpFix successfully repaired a
total of 36 Defects4J bugs and outperformed many existing repair
techniques in repairing more bugs. We also compared sharpFix,
ssFix, and four other techniques on another dataset Bugs.jar-
ELIXIR. Our results show that sharpFix did better than others
and repaired the largest number of bugs.

Index Terms—automated program repair, code search, code
reuse

I. INTRODUCTION

An automated program repair (APR) technique can sig-

nificantly save people time and effort by repairing a bug1

automatically. Taking as input a faulty program and a fault-

exposing test suite that the program failed, such a technique

automatically modifies the faulty program and can produce

a patched program that passes the test suite. A branch of

APR techniques [1]–[5] adopt a search-based approach for

patch generation: they define a space of patches generated

from applying a pre-defined set of modifications on a set of

suspicious locations of the faulty program identified by fault

localization techniques [6], and then search in the space for a

correct patch. The search space is often huge, and finding a

correct patch within it is difficult [7].

To address the search space problem, one idea is to reuse

existing code from existing programs [8], [9]. Through reusing

such code, a repair technique avoids generating a large amount

of artificial code to mitigate search space explosion. The recent

technique ssFix [10] was built upon the idea. It performs

syntactic code search to find existing code fragments (the

1In this paper, we use “bug” and “fault” interchangeably.

candidates) that are similar to the bug context (the target) from

a code database and reuses those code fragments to produce

patches for bug repair. ssFix leverages the syntactic differences

between the target and each candidate to produce patches. For

a candidate that is similar to the target, the differences are

small, and the search space is reduced.

The keys to ssFix’s success lie in the approaches it uses for

code search and code reuse. After investigating their effec-

tiveness using the Defects4J bug dataset [11], we found that

its approaches are not truly effective and can be significantly

improved. ssFix’s code search uses a target that contains the

local context of the faulty statement as query (three statements

as most) and searches for candidates that are of comparable

sizes. It uses the same method for searching candidates from

the local program (or the local search) and from the external

repository (or the global search). This type of code search

is inflexible: we empirically found that (1) for local search,

it needs less context to find candidates related to the faulty

statement itself, and for global search, it needs more context

to find candidates related to the target method (the enclosing

method of the target); and that (2) different methods should

be used for the two types of search. For code reuse, ssFix uses

three steps: code translation, code matching, and modification

to generate patches. Its code translation translates a candidate

by finding variable, method, and type identifiers used in the

candidate that are related to those used in the target and then

renaming the candidate identifiers. Identifying two identifiers

as related or not is only based on their usage contexts (the

enclosing expressions and statements) which is not enough;

Its code matching is based on a tree matching algorithm

with a list of matching rules and arbitrary thresholds used

and is inflexible. Its modification can lead to a large set of

patches generated as it involves modifying not only the faulty

statement itself but also its context. Validating those patches

however is expensive.

To address these problems, we developed a new APR

technique sharpFix which follows ssFix’s basic repair idea

but uses different approaches for code search and code reuse.

sharpFix uses different forms of target and candidate and

different search methods for doing local and global search.

Its code reuse uses different and improved methods for code

translation, code matching, modification, and patch validation

to address the problems mentioned above. The technical

10

2019 IEEE/ACM International Workshop on Genetic Improvement (GI)

978-1-7281-2268-7/19/$31.00 ©2019 IEEE
DOI 10.1109/GI.2019.00012

Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:09:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An Overview of sharpFix

differences are non-trivial and actually lead to better code

search, code reuse, and repair abilities that sharpFix has over

ssFix. We confirmed these through our experiments using the

Defects4J bug dataset. The results show that sharpFix repaired

a total of 36 bugs with correct patches generated. We also

compared sharpFix, ssFix, and four existing APR techniques:

jGenProg [12], jKali [12], Nopol (version 2015) [13], and

HDRepair [14] on another dataset: Bugs.jar-ELIXIR. The

results show that sharpFix outperformed all these techniques

and confirm again that sharpFix is an improvement over ssFix.
In this paper, we make the following contributions:

• A new APR technique sharpFix that finds and reuses

existing code for automatic bug repair.

• An implementation of sharpFix (code available at

https://github.com/sharpFix18/sharpFix).
• An evaluation of sharpFix on two bug datasets that shows

sharpFix is an improvement over ssFix and outperforms

four other repair techniques.

II. OVERVIEW

Figure 1 shows an overview of sharpFix’s repair process.

sharpFix takes in a faulty program and a fault-exposing test

suite, and automatically generates as output a patched program

that passes the test suite (or nothing if it cannot find one). The

repair process is done in three stages: (1) fault localization, (2)
code search, and (3) code reuse. For fault localization, it uses
ssFix’s approach that leverages the spectrum-based technique

GZoltar [15] to identify a list of suspicious statements that are

likely to be buggy. Each statement is associated with a score

ranged from 0 (non-suspicious) to 1 (highest-suspicious) that

represents the likelihood of being buggy. The statements are

ranked by scores from high to low. sharpFix next looks at

each suspicious statement independently to produce patches

for it. With a suspicious statement as the target, in the

second stage, sharpFix does code search to find statements

as the candidates from both the local faulty program and an

external code repository. These candidates are ranked based

on their syntactic similarities with the target and the syntactic

similarities between their contexts and the target’s context.

sharpFix looks at each candidate independently to produce

patches for the target. In the third stage, sharpFix translates

the candidate and its context by renaming the used variable,

type, and method identifiers, matches code between the target

and the translated candidate, produces patches for the target

using the translated code, and validates the patches using the

test suite. It reports as output the first validated patch whose

corresponding patched program passes the test suite.
We will use the Defects4J bug M69 (Figure 2) as an example

to explain how sharpFix works. For this bug, the developer

1 double r=correlationMatrix.getEntry(i, j);
2 double t=Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r)));
3 - out[i][j]=2 * (1 - tDistribution.cumulativeProbability(t));//target
4 + out[i][j]=2 * tDistribution.cumulativeProbability(-t);

Fig. 2. The M69 Bug and its Developer Patch

1 degreesOfFreedom=df(v1, v2, n1, n2);
2 distribution.setDegreesOfFreedom(degreesOfFreedom);
3 return 2.0 * distribution.cumulativeProbability(-t); //candidate
4 //return 2.0 * tDistribution.cumulativeProbability(-t); //translated

Fig. 3. A Code Fragment from the Bug’s Local Program

patch changed the statement from line #3 to line #4 for

calculating the correct matrix of p-values associated with a null

hypothesis for Pearsons Correlation. For this bug, sharpFix’s

fault localization identified the statement at line #3 as the target

for repair. The statement is ranked as No. 10.

III. METHODOLOGY

In this section, we first elaborate on sharpFix’s code search

and code reuse approaches and then summarize the technical

differences between sharpFix and ssFix.

A. Code Search

In the code search stage, sharpFix takes in the target and

does code search to generate as output a list of candidates. It

uses different search methods to do local search and global

search and merges the results.

For local search, sharpFix uses the target as the query code

chunk. It does not use a larger code chunk as we found that

a larger chunk that contains more context is more likely to

be unique in the local program. For local search, sharpFix

compares the target with every single statement as candidate

in the faulty program. It calculates a score by comparing

the tokens extracted from the names of variables, types, and

methods used in the two statements to measure their syntactic

similarity. To extract tokens from a statement, sharpFix first

creates a list containing the original names of the variables,

types, and methods used in the statement. It next looks at each

name and splits it by camel-cases, underscores, and numbers.

It further does stemming on these splitted tokens using the

Porter Stemming algorithm [16]. Finally, it transforms each

token in the list into lower-case. We call the tokens extracted

as such the search tokens2. As an example, we show below

the search tokens (in angle brackets) extracted from the target

in Figure 2.

<out>,<i>,<j>,<tdistribution>,<t>,<distribution>
<cumulativeprobability>,<cumulative>,<probability>,<t>

With the lists of search tokens extracted from the target and

the candidate, sharpFix calculates the Dice Similarity3 of them

as the score. sharpFix finally ranks the candidates by the

calculated scores as the local search result.

For global search, sharpFix uses a different search method.

It first finds Java methods from the code repository that

are similar to the enclosing Java method of the target, or

2We compared in total three types of tokens in [17] (Section IV-B1).
3The original measure is used for sets. We slightly changed it to be used

for lists.

11

Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:09:05 UTC from IEEE Xplore. Restrictions apply.

the target method, using a search method similar to ssFix’s.

The differences are that here sharpFix uses Java methods

as the query code chunks and uses three as the k-value

for generating k-grams4. For each retrieved Java method m,

sharpFix calculates a score s for it. sharpFix does not simply

report these Java methods as the search results: a method can

be big and reusing it can lead to too many patches generated.

So instead, sharpFix uses its local search method to identify

as candidates statements in m that are most similar to the

target (it currently identifies two of such statements from m).

Each such statement is associated with the retrieval score s.
sharpFix finally ranks the candidates as the global result.

sharpFix merges the search results by first normalizing the

scores of the candidates retrieved by local search and by global

search separately and then ranking them all together. It selects

the top-200 candidates as the code search output. For the target

at line #3 of Figure 2, sharpFix did code search and retrieved

a candidate from the local faulty program shown at line #3 of

Figure 3. The rank of the candidate is No. 2.

B. Code Reuse

In this stage, sharpFix reuses each candidate retrieved in the

previous stage independently to repair the target. This is done

in four steps: code translation, code matching, modification,
and patch validation.

1) Code Translation: As the first step, sharpFix translates

the candidate by renaming variable, type, and method identi-

fiers used in the candidate and its context, i.e., the enclosing

method. Without doing so, it would often fail to directly

transfer code from the candidate and its context to the target

program for repair as there can be undeclared identifiers. The

translation is done in three steps: (1) collecting identifiers in

the candidate program and those in the target program, (2)

identifying candidate and target identifiers that are related,

and (3) renaming candidate identifiers as their related target

identifiers.

For (1), sharpFix collects a list of candidate identifiers, or

cids, as the variable, type, and method identifiers used in the

candidate’s enclosing method. An identifier we mention here

is actually an identifier binding that represents for example a

variable declaration and its use. sharpFix collects all identifiers

in the candidate method scope since it may reuse code in that

scope to produce patches. sharpFix collects a list of target

identifiers, or tids, as the variable, type, and method identifiers

used in the target’s enclosing method and other identifiers that

are accessible in the method: the declared field and method

names in the target’s enclosing class and the class name.

For (2), sharpFix creates a mapping that maps each cid to a

tid identified as related. This is done in four steps: (a) it first

maps cids to tids that share the same names that are not too

short, i.e., with at least three characters; (b) if the candidate’s

enclosing method name cid is used in the method body and is

unmapped, sharpFix maps it to the target’s enclosing method

4To determine this, we compared several search methods in [17] (Section
IV-B1).

name tid; (c) if the candidate’s enclosing class name cid is

used in the method body and is unmapped, sharpFix maps it

to the target’s enclosing class name tid; (d) sharpFix maps an

unmapped cid to the tid that has most similar usage contexts;

and (e) sharpFix maps an unmapped cid to the tid that shares

the largest number of conceptual tokens extracted from their

names measured by the Dice Similarity. For (c), an identifier’s

usage contexts are its parental expressions and statements

in the AST structure. sharpFix compares the parameterized

strings of two identifiers’ usage contexts using ssFix’s method

(III-A(2) of [10]). The only difference is here sharpFix takes

into account the results from (a) and (b): it does not param-

eterize the mapped identifiers from (a) and (b) for generating

a usage context’s parameterized string. As an example, one

usage context of distribution is the method call at

Figure 3, line #3, and the parameterized string sharpFix gener-

ates is v.cumulativeProbability(-v). Note the

method name cumulativeProbability is mapped in (a)

and is not parameterized. For (d), to extract conceptual tokens,

sharpFix first generates the search tokens (from Section III-A),

and then filters away tokens that are Java keywords, stop

words, too-short, and too-long (less than three and greater than

32 characters). Note that sharpFix checks the compatibility of

two identifiers to make sure a variable cid is not mapped to a

method tid for example. After a mapping is created, for (3),

sharpFix simply renames a cid to its mapped tid.

For our example, sharpFix renames distribution (Fig-

ure 3, line #3) as tDistribution (Figure 2, line #3). The

former is mapped to the latter due to a common conceptual

token distribution that they share.

2) Code Matching: sharpFix does not arbitrarily transfer

code from candidate to target to produce patches: it does

code matching in this step to match related statements and

expressions from the target and the translated candidate, and

in the next step it performs modifications based on the matched

statements and expressions to produce patches.

sharpFix’s code matching is based on comparing the search

tokens (defined in Section III-A) and symbols (e.g., +) that it

extracts from statements and expressions. We call the search

tokens and symbols together the match tokens. We call the

target tchunk and the translated candidate cchunk. For code

matching, sharpFix accepts tchunk and cchunk as input. As

output, it produces a code mapping that maps each statemen-

t/expression in tchunk to its matched statement/expression

in cchunk. To create such a mapping, sharpFix starts by

collecting two lists of statements and expressions tses and

cses from tchunk and cchunk respectively (by visiting the

ASTs). The collected expressions are non-trivial and do not

include identifiers, number constants, or any of the four types

of literals: boolean, null, character, and string. For each

statement/expression tse in tses, sharpFix finds a cse in cses
that is compatible and shares the most match tokens with tse
(measured by the Dice Similarity) and maps tse to cse.

When two ses (statements/expressions) are both statements,

they are compatible if they are both loops. Otherwise, they

12

Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:09:05 UTC from IEEE Xplore. Restrictions apply.

need to have the same statement type5 (e.g., both return
statements) to be compatible. When two ses are both ex-

pressions, they are compatible if their expression types are

equal. When one se is a statement and the other is an

expression, they are only compatible if the statement’s type

is VariableDeclarationStatement and the expression’s type is

either Assignment or VariableDeclarationExpression.
For the bug example, sharpFix maps the right-hand side of

the target to the returned expression of the translated candidate.

The extracted match tokens and the similarity calculation are

shown below.

Matched tokens from target (16 in total):
<2> <*> <(> <1> <-> <tdistribution> <t> <distribution> <.>
<cumulativeprobability> <cumulative> <probability> <(> <t> <)> <)>

Matched tokens from translated candidate (13 in total):
<2.0> <*> <tdistribution> <t> <distribution> <.>
<cumulativeprobability> <cumulative> <probability> <(> <-> <t> <)>

Overlapped tokens (11 in total):
<*> <tdistribution> <t> <distribution> <.> <cumulativeprobability>
<cumulative> <probability> <(> <t> <)>

Dice Similarity: (2*11)/(16+13)=0.759

3) Modification: sharpFix uses four modifications: state-
ment/expression replacement, method replacement, statement
insertion, and adding if-guard to transfer code from the

candidate and its context to the target and its context to

produce patches. It leverages ssFix’s method for doing state-

ment/expression replacement based on the matching result

yielded in the previous step. If a statement/expression se from

the target is mapped to a statement/expression se′ from the

candidate, sharpFix replaces se with se′ to yield a patch. Note

that it can yield more patches by replacing the components

of se with those of se′. For method replacement, sharpFix

replaces the target’s enclosing method with the translated

candidate’s enclosing method to support making multiple

changes within the method scope. For insertion, sharpFix looks

at the translated candidate s′ to which the target s is mapped,

identifies the two neighboring statements of s′ in its block:

s′0 and s′1 that are before and after s′, and inserts s′0 before

s and s′1 after s to yield two patches. To produce patches

using adding if-guard, sharpFix looks at the target s and its

mapped candidate s′. If the parent of s′ is an if-statement with

a condition e′, sharpFix creates new if-statements using e′ to
guard s and other statements. Currently, sharpFix selects two

sets of statements to be guarded: (1) s itself and (2) s plus the

following statements in its block.

For the bug example, sharpFix replaced the right-hand side

of the target with the returned expression of the translated

candidate to produce the correct patch.

4) Patch Validation: In the previous step, sharpFix does

modification to generate patches. In this step, it validates

the generated patches. To do this, sharpFix first removes

patches that are syntactically duplicated and have already been

validated before (from using other candidates). It next follows

ssFix’s approach to sort the patches by their sizes to possibly

avoid reporting an overfitting patch [19], [20]. sharpFix next

validates each sorted patch: It first applies the patch on the

5The type of a statement/expression is its node type in the abstract syntax
tree that sharpFix builds using the Eclipse JDT library [18].

faulty program to generate a patched program; then does static

analysis using S6’s method [21] to check whether the patched

program can be resolved (to see for example whether it uses

undeclared variables); then compiles the resolved program;

and finally runs it against the test suite. sharpFix reports

the first validated patch whose patched program passes the

test suite. Such a patch is called a plausible patch [22]. For

our example, sharpFix reported as output the correct patch

generated in the previous step.

C. Technical Differences Between sharpFix and ssFix

We next summarize the technical differences between the

two techniques.

Code Search: ssFix uses the same form of code chunks

for local and global search. The used code chunks contain

at most three statements. sharpFix uses different forms of

code chunks. For local search, it uses code chunks containing

single statements, and for global search, it uses code chunks

containing Java methods. ssFix uses the same search method

for local and global search. The method sharpFix uses for

local search is based on the extracted search tokens and is

significantly different from ssFix’s method. For global search,

it reuses ssFix’s method for finding Java methods from the

code repository. It further uses its local search method for

finding statements within the retrieved Java methods.

Code Translation: the main differences lie in the ap-

proaches the two techniques use for finding related identifiers

between the candidate and the target. ssFix finds identifiers

only within the scope of the two chunks, and identify related

identifiers by their usage contexts. sharpFix finds identifiers

within a larger scope: the enclosing methods (and classes)

of the two chunks. The used approach for identifying related

identifiers is more complicated: it not only compares two iden-

tifiers’ usage contexts but also their compatibility, locations,

names, lengths, and tokens extracted from their names.

Code Matching: ssFix uses a tree matching algorithm with

non-trivial matching rules and human-created thresholds. This

makes its code matching inflexible. For example, it does not

allow two method calls to match unless the method names are

identical, and this can hinder it from repairing an incorrect

method call. sharpFix’s code matching is based on token

matching. It uses significantly simplified matching rules with

no thresholds.

Modification & Patch Validation: For modification, ssFix

uses statement/expression replacement, statement insertion,

and statement deletion. sharpFix adds two new modifications:

adding if-guard and method replacement. sharpFix does not

do statement deletion as it was shown in [10] to be likely to

produce defective patches. sharpFix uses ssFix’s statement/ex-

pression replacement but modifies ssFix’s statement insertion.

This is because the target and candidate sharpFix uses both

contain single statements. For patch validation, compared to

ssFix, sharpFix performs static analysis as an additional step

to identify invalid patches. sharpFix works more efficient by

using such a step to filter away invalid patches without actually

compiling them.

13

Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:09:05 UTC from IEEE Xplore. Restrictions apply.

For the bug example, in the code search stage, ssFix

produced code chunks including the target and the candidate

statements with more contexts. Doing code search using such

chunks, ssFix failed to find any code fragment that is useful

for repair like the one in Figure 3. Even if ssFix could find that

code fragment, it would still fail to generate the good trans-

lation by renaming distribution as tDistribution:
comparing their usage contexts would not work in this case.

Due to such failures, ssFix finally produced no patch.

IV. EVALUATION

We compared sharpFix and ssFix on the Defects4J dataset

[11]. The results showed that, compared to ssFix, sharpFix

has better code search, code reuse, and repair abilities. On

the Defects4J dataset, sharpFix produced correct patches for

36 bugs, whereas ssFix only produced correct patches for 22

bugs. We also compared sharpFix against ssFix and four other

repair techniques (jGenProg, jKali, Nopol, and HDRepair) on

Bugs.jar-ELIXIR [23], a dataset of 127 real Java bugs. The

results show that sharpFix outperformed all these techniques.

A. Fix Ingredient Experiment

To evaluate sharpFix’s and ssFix’s code search and code

reuse, we conducted a fix ingredient experiment to see whether

the fix code exists for a bug. We identified a total of 103

Defects4J bugs whose developer patches (available from the

dataset) are simple, i.e., all the fixing changes are made within

an expression or a primitive statement that has no children

statements. For a simple patch, we defined six types of fix

ingredients. And for each of the 103 bugs, we identified the

fix ingredient and checked whether it exists in a code database

that consists of the local faulty program and a code repository

for which we used the DARPA MUSE repository [24] that

contains 66,341 Java projects (about 81 GB). More details can

be found in [17]. Our results show that (1) for 50 (48.5%) of

the 103 bugs, we retrieved the exact fix ingredients from the

code database and (2) for 80 (77.7%) bugs, we retrieved fix

ingredients in the parameterized forms. For parameterization,

we replaced program-specific (non-JDK) variables, types, and

methods with special symbols. We used the results as truths

for the code search and code reuse experiments.

B. Code Search Comparison

For evaluation, we ran sharpFix’s and ssFix’s code search

to see for how many of the 103 bugs, they can effectively

retrieve candidate chunks containing the fix ingredients that

we identified. We call a candidate chunk (possibly after

translation) that contains the fix ingredient in its exact form

promising. Our results show that sharpFix and ssFix retrieved

promising candidate chunks within the top-200 results for 42

and 37 bugs respectively.

a) Experiment: For each of the 103 bugs, we provided

sharpFix with the faulty statement, ran its code search to

retrieve a list of candidate statements from the code database,

performed its translation to translate a candidate’s enclosing

method, and produced a code chunk. The code chunk includes

Fig. 4. The Retrieval of Promising Candidate Chunks that Contain the Fix
Ingredients (Columns show the number of bugs for which promising candidate
chunks were retrieved)

the candidate statement, its two neighbouring statements (used

for insertion), and the enclosing if-condition (used for adding

if-guard) if the enclosing statement is an if-statement. We then

checked whether the code chunk is promising. To evaluate

ssFix’s code search, for each bug, we provided ssFix with

the faulty statement, ran its code search to retrieve a list of

candidate chunks each containing at most three statements,

performed its translation to translate each chunk, and checked

for promising chunks. For ssFix, we used the same five

projects used in [10] as the local programs. For sharpFix, the

local programs are the faulty programs for the 103 bugs. The

code repository we used is the DARPA MUSE repository. For

both experiments, we filtered away candidate chunks that are

syntactically duplicated (they would be given the same rank)

and those that are simply from the bug-fixed versions. We

looked at the top-200 chunks as the retrieval results.

b) Result: Figure 4 shows the numbers of promising

candidate chunks sharpFix and ssFix retrieved within the top-

k results (with k being 50, 100, or 200). Within the top-

200 results, sharpFix retrieved in total 59 chunks that contain

the fix ingredients in the parameterized forms, among which,

42 are promising, i.e., contain the exact fix ingredients after

translation. Our fix ingredient experiment shows that for as

many as 80 bugs, the fix ingredients in the parameterized

forms exist. So sharpFix retrieved promising fix ingredients for

42/80=52.5% bugs. We found that ssFix retrieved promising

candidate chunks for 37 bugs, and it retrieved promising fix

ingredients for 37/80=46.3% bugs. Compared to ssFix’s code

search, sharpFix’s code search retrieved five more promising

candidate chunks within the top-200 results, and it retrieved

39 promising chunks within the top-50 results which are more

than all the promising chunks ssFix retrieved within the top-

200 results.

Our results show that sharpFix’s code search is better:

It retrieved promising candidate chunks that contain

the exact fix ingredients for 52.5% bugs while ssFix

retrieved promising candidate chunks for 46.3% bugs.

C. Code Reuse Comparison

To evaluate sharpFix’s and ssFix’s code reuse, we wanted

to see how many of the retrieved candidate chunks that

contain fix ingredients can be successfully reused by the

14

Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:09:05 UTC from IEEE Xplore. Restrictions apply.

two techniques for producing correct patches. To do this,

for sharpFix, we looked at the 59 bugs for which sharpFix

retrieved candidate chunks that contain the parameterized fix

ingredients. For each such bug, we provided sharpFix with

the target and the retrieved candidate (the statements), and ran

its reuse automatically. If sharpFix produced a plausible patch,

we manually checked whether the patch is correct. Our results

show that sharpFix produced 30 plausible patches which are all

correct. It successfully reused 30/59=50.8% candidate chunks.

The exact fix ingredients (without any translation) are

contained in 39 candidate chunks, and we expect sharpFix

to be able to reuse those fix ingredients in producing the

correct patches. For the other 20 (59-39) chunks which only

contain the fix ingredients in the parameterized forms, we

identified only three chunks that can be reasonably reused

for repair: it may not be reasonable for a repair technique

to translate an arbitrary, parameterized fix ingredient into the

exact one to be reused for repair. We analyzed sharpFix’s

failures in reusing the chunks for repairing the 12 (39+3-30)

bugs and found that the candidate chunks, though containing

the fix ingredients, are not ideal for repairing 9 bugs. As

an example, for the bug Cl92, the target statement int
indexOfDot = namespace.indexOf('.') to be re-

paired uses the incorrect method call indexOf. sharp-

Fix found the candidate statement as a while-loop contain-

ing the fix ingredient namespace.lastIndexOf('.')
(after translation) in the loop body, but it also uses

namespace.indexOf('.')>0 as the loop condition.

In reusing the candidate for repair, by code match-

ing, sharpFix matched the incorrect method call in the

target statement with the loop condition in the candi-

date statement and therefore missed the opportunity of

reusing namespace.lastIndexOf('.') to repair the

bug. Though it is possible to make sharpFix’s code matching

more sophisticated, we think a better solution for this case is

to find a better candidate statement that contains the correct

method call like the statement in the loop body. So we

consider the candidate chunk as not ideal for this case. To

successfully reuse the candidate chunks to repair the other 3

bugs, sharpFix’s modification needs to be more sophisticated.

For comparison, we also evaluated ssFix’s code reuse. By

code search, ssFix retrieved 57 candidate chunks that contain

parameterized fix ingredients. For each of the 57 bugs, we

provided ssFix with the retrieved candidate chunk and ran

its code reuse. Our results show that ssFix produced 25

plausible patches among which 23 are correct. It successfully

reused 23/57=40.4% candidate chunks. We found the exact

fix ingredients are contained in 37 chunks. For the other 20

(57-37) chunks which only contain the fix ingredients in the

parameterized forms, we manually determined whether they

can be reasonably reused. We identified only 4 of such chunks.

We analyzed the failures of ssFix in reusing the 18 (37+4-

23) reasonable chunks for producing the correct patches. We

found that 7 candidate chunks are not ideal for repair. ssFix

yielded bad candidate translations for 3 cases, it created bad

code matching results for 2 cases, and its modifications are

TABLE I
REPAIRING THE DEFECTS4J BUGS

Project
(#Bugs)

sharpFix ssFix
Time (min.) #P #C Time (min.) #P #CMin Max Med Avg Min Max Med Avg

C (26) 0.8 115.7 7.2 19.2 9 4 1 80.7 12.4 20.7 7 2

Cl (133) 1.8 96.1 21.3 26 17 4 2.5 54.9 10.1 16.3 14 2

M (106) 0.7 118.5 11.3 33.2 33 13 1 119.3 14.7 30.2 26 8

T (27) 1.6 30 12.2 15.1 5 0 1.4 37.3 7.5 13.5 4 0

L (65) 0.8 116.1 4.8 18 25 15 0.8 117.8 4.3 13.1 18 10

Sum (357) 0.7 118.5 11.3 25.1 89 36 0.8 119.3 10.1 21 69 22

We show the projects in their abbreviations: C is JFreeChart; Cl is Closure Compiler; M is Commons Math; T is Joda-Time; and L is

Commons Lang. #P and #C are the respective numbers of the plausible and correct patches generated.

TABLE II
REPAIRING BUGS.JAR-ELIXIR BUGS (SHARPFIX & SSFIX)

Project
(#Bugs)

sharpFix ssFix
Time (min.) #P #C Time (min.) #P #CMin Max Med Avg Min Max Med Avg

ACC (10) 1.2 1.2 1.2 1.2 1 1 1.3 4.1 2.7 2.7 2 1

CML (16) 39.2 46.5 42.9 42.9 2 1 35.6 118.1 69.6 73.3 4 2

FLK (7) 0.8 0.8 0.8 0.8 1 1 6.9 6.9 6.9 6.9 1 1

OAK (31) 2.6 98.5 11.2 28.3 10 0 0.6 111.2 5.4 21.4 14 1

MAT (21) 0.8 103.4 26.2 32.2 10 6 0.8 64.9 11.5 17.2 9 5

MNG (5) 32.4 32.4 32.4 32.4 1 0 0.6 0.6 0.6 0.6 1 0

WCT (37) 0.9 91.4 8.4 21.6 14 6 3 82.8 8.7 22.1 12 1

Sum (127) 0.8 103.4 12.8 26.3 39 15 0.6 118.1 8.5 23.9 43 11

We show the projects in their abbreviations: ACC is Accumulo; CML is Camel; FLK is Flink; OAK is Jackrabbit Oak; MAT is Commons

Math; MNG is Maven; and WCT is Wicket. #P and #C are the respective numbers of the plausible and correct patches generated.

not sophisticated enough for producing the correct patches for

6 cases.

Our results show sharpFix’s code reuse is better

than ssFix’s: sharpFix reused 50.8% of the candidate

chunks it retrieved for successful repair while ssFix

only reused 40.4% candidate chunks.

D. Repair

We ran sharpFix and ssFix to repair all the 357 Defects4J

bugs automatically. We also ran sharpFix, ssFix, and four other

repair techniques jGenProg [12], jKali [12], Nopol (version

2015) [13], and HDRepair [14] automatically to repair bugs

in another dataset Bugs.jar-ELIXIR created by Saha et al. [23]

that contains 127 real bugs. We set the time and memory

budgets for repairing each bug as two hours and 8 GB for all

experiments. We ran all the experiments on a machine with

32 Intel-Xeon-2.6GHz CPUs and 128 GB memory. Given that

jGenProg and HDRepair use randomness for patch generation,

we ran each technique in three trials to repair a bug. Despite

the small number of trials, we believe our results are sufficient

to show that sharpFix outperforms the two tools: it generated

more than 10 correct patches in one trial than the tools did in

three trials. We did not compare sharpFix to many other repair

techniques that are written for C (e.g., SearchRepair [8], Code

Phage [9], Prophet [22], and Angelix [25]) or are not publicly

available (e.g., PAR [3]) including ELIXIR [23].

The results for the Defects4J bugs are shown in Table I.

sharpFix produced in total 89 plausible patches with me-

Fig. 5. The Overlap of Correctly Patched Bugs (Left: Defects4J; Right:
Bugs.jar-ELIXIR)

15

Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:09:05 UTC from IEEE Xplore. Restrictions apply.

TABLE III
REPAIRING BUGS.JAR-ELIXIR BUGS (ALL TECHNIQUES)

Tool Time (min.) #Plausible #CorrectMin Max Med Avg
sharpFix 0.8 103.4 12.8 26.3 39 15

ssFix 0.6 118.1 8.5 23.9 43 11

jGenProg 1.8 61.9 14.6 20.7 5 1

jKali 1.2 32.7 21.6 18.8 6 1

Nopol 4.3 29 9.5 12.6 8 0

HDRepair 93.8 108.1 101 101 2 1

dian and average times of producing a patch being about

11 and 25 minutes respectively. Among the 89 patches, 36

are correct. We manually determined the correctness of a

plausible patch by comparing it to the developer patch and

checking whether the two patches are semantics-equivalent.

Compared to sharpFix, ssFix produced 69 plausible patches

among which 22 are correct. The running times of the two

techniques are comparable. With better code search and code

reuse abilities, sharpFix works significantly better than ssFix

in repairing 14 more bugs with correct patches generated.

As shown in Figure 5 (the left one), it produced 18 correct

patches that ssFix failed to produce. Since the experiment of

repairing all 357 Defects4J bugs is expensive, we did not run

jGenProg, jKali, and HDRepair for comparison. Given that

ssFix outperformed these techniques on this dataset [10], we

believe sharpFix would also outperform them.

Table II shows the repairing results of sharpFix and ssFix

for each of the 7 projects contained in the Bugs.jar-ELIXIR

dataset and for all of them. According to the result table,

sharpFix and ssFix have comparable results for six of the

projects. For WCT, however, sharpFix does significantly better

with five more correct patches generated. For those WCT bugs

for which sharpFix successfully repaired while ssFix did not,

we found sharpFix effectively retrieved the key candidates: For

five of the bugs that ssFix failed to repair, sharpFix looked at

no more than 8 candidates to yield the correct patches (for the

other bug WCT-5686, it found a candidate ranked 31th).
1 //WCT-5891 bug: substring(0,5) should be changed to substring(0,6)
2 int firstDigits=Integer.parseInt(creditCardNumber.substring(0,5));
3 if (firstDigits>=622126 && firstDigits<=622925) {
4 return CreditCard.CHINA_UNIONPAY; }
5
6 //sharpFix’s candidate
7 int firstSixDigits=Integer.parseInt(creditCardNumber.substring(0,6));
8
9 //ssFix’s candidate

10 int firstDigits=Integer.parseInt(creditCardNumber.substring(0,3));
11 if (firstDigits>=300 && firstDigits<=305) {
12 return CreditCard.DINERS_CLUB_CARTE_BLANCHE; }

As an example, for WCT-5891, using the faulty statement at

line #2, sharpFix retrieved the fix statement at line #7 from the

local program that contains the correct argument (integer 6)
for the method call substring. Using the local context of

the faulty statement, ssFix found a candidate that is similar to

the context but does not contain the correct integer argument.

Using such a candidate, ssFix produced an overfitting patch

by modifying not the faulty statement but the neighbouring

if-statement: the condition at line #3.
1 //M33 bug: maxUlps should be changed to epsilon
2 if (Precision.compareTo(entry, 0d, maxUlps)>0) {
3 + if (Precision.compareTo(entry, 0d, epsilon)>0) { //sharpFix’s patch
4 columnsToDrop.add(i); }}

Although sharpFix’s approaches are more effective overall,

there are cases where sharpFix failed to produce correct

patches that ssFix produced. As an example, for the bug M33,

ssFix and sharpFix both targeted the statement at line #4 for

repair. ssFix produced a target chunk including the if-statement

at line #2, and successfully found another if-statement that

contains the correct usage of comparedTo and produced the

correct patch. Since sharpFix failed to include the if-condition

in the target chunk, it missed the opportunity of repairing the

condition. It finally produced an overfitting patch by using an

if-condition to guard the statement.

Table III shows the repairing results of all the six techniques.

We found that compared to sharpFix and ssFix, the other four

techniques have limited repair abilities. They each produced

correct patches for no more than one bug. jGenProg only

looks at finding the fix ingredients as statements from the

local faulty program. This type of repair constrains itself from

finding useful fix ingredients that are expressions and are

from non-local programs. jKali can only do deletions and is

unable to produce many types of non-deletion patches. Nopol

looks at producing if-condition-related patches and is prone

to synthesizing if-conditions that are either too constrained or

too loose. HDRepair leverages mined bug-fixing changes to

guide the search of a correct patch. However, according to

our results, this type of guidance is not effective.

Our results show sharpFix is better than ssFix in

successfully repairing 14 more Defects4J bugs and 5

more Bugs.jar-ELIXIR bugs, and it outperforms the

other four techniques in repairing many more bugs.

All the experimental results can be found at https://github.

com/sharpFix18/sharpFix/tree/master/expt0.

V. THREATS TO VALIDITY

To determine patch correctness, one of the authors manually

analyzed each generated plausible patch and determined it to

be correct if (1) the patch made changes at the right locations

where changes in the developer patch were made and (2) there

was a relatively obvious semantics-preserving transformation

between the patch and the developer patch. We released all the

generated plausible patches and explained each patch identified

as correct as to why. Identifying patches that are semantically

equivalent is in general challenging, and it is possible that

there are patches that are indeed semantics-equivalent to the

developer patches but made changes at locations not targeted

by the developer patches and thus were not identified as

correct. Understanding the failure cases of sharpFix’s and

ssFix’s reuse is also based on manual analysis and could also

be biased. For example, it might not be clear whether a failure

was due to a weak code matching or a weak modification. We

also released the reuse results. We compared sharpFix and

ssFix on two bug datasets and found sharpFix to be better

than ssFix. It is possible to have results different from ours

using other datasets.

VI. RELATED WORK

sharpFix finds and reuses existing code from a code

database for repair. It follows ssFix’s basic idea [10] but uses

16

Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:09:05 UTC from IEEE Xplore. Restrictions apply.

different approaches for code search and reuse. sharpFix is

closely related to SearchRepair [8] and Code Phage [9] which

also do code search to find existing code for bug repair.

Different from sharpFix which performs syntactic code search,

SearchRepair’s code search is based on symbolic execution

and constraint-solving, and Code Phage’s code search is based

on program execution. CSAR [26] is similar to SearchRepair

but performs string matching on constraints rather than doing

constraint-solving to identify semantics-related code. sharpFix

is also related to SimFix [27] which leverages similar code

to produce patches. Different from sharpFix, SimFix also

leverages existing patches to build the search space, and it

only looks at the local program for finding similar code.

The syntactic features used by the two techniques for finding

similar code are also different. GenProg [1], [28] is an early

APR technique that is related to sharpFix. It uses a genetic

algorithm to reuse code from the faulty program itself to

produce patches.

sharpFix is related to many repair techniques that use equiv-

alence analysis and cost model [2], human-written templates

[3], bug-fixing instances [29], [30], program comparison [31],

program synthesis [20], [25], [32]–[34], condition synthesis

[35], [36], modifications with patch ranking models [22], [23],

[37], learned transformations [38], [39], reference implemen-

tation [40], and non-test-suite specifications [41].

VII. CONCLUSION AND FUTURE WORK

The success of a search-based APR technique like ssFix

hinges on its abilities in accurately finding the right code for

bug-fixing and effectively reusing it to produce the correct

patch. We identified ssFix’s weakness in doing code search

and code reuse, developed sharpFix which uses improved

code search and reuse approaches, and demonstrated that it

can do better repair. Our future work will look at evaluating

sharpFix on more bug datasets and comparing it with more

APR techniques.

REFERENCES

[1] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” TSE, pp. 54–72, 2012.

[2] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: models and first results,” in ASE, 2013, pp.
356–366.

[3] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in ICSE, 2013, pp. 802–811.

[4] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in ICSE, 2014, pp. 254–265.

[5] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in SANER, 2016, pp. 213–224.

[6] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” TSE, pp. 707–740, 2016.

[7] F. Long and M. Rinard, “An analysis of the search spaces for generate
and validate patch generation systems,” in ICSE, 2016, pp. 702–713.

[8] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs
with semantic code search (t),” in ASE, 2015, pp. 295–306.

[9] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic
error elimination by horizontal code transfer across multiple applica-
tions,” in PLDI, 2015, pp. 43–54.

[10] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in ASE, 2017, pp. 660–670.

[11] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of exist-
ing faults to enable controlled testing studies for Java programs,” in
ESEC/FSE, 2014, pp. 437–440.

[12] “SpoonLabs Astor,” https://github.com/SpoonLabs/astor.
[13] “SpoonLabs Nopol,” https://github.com/SpoonLabs/nopol.
[14] HDRepair, “HDRepair repository,” https://github.com/xuanbachle/bugfixes,

2016.
[15] J. Campos, A. Riboira, A. Perez, and R. Abreu, “GZoltar: an eclipse

plug-in for testing and debugging,” in ASE, 2012, pp. 378–381.
[16] M. F. Porter, “An algorithm for suffix stripping,” Program, pp. 130–137,

1980.
[17] Q. Xin and S. P. Reiss, “Revisiting ssFix for Better Program Repair,”

arXiv e-print arXiv:1903.04583, 2019.
[18] “Eclipse JDT,” https://www.eclipse.org/jdt.
[19] E. K. Smith, E. T. Barr, C. L. Goues, and Y. Brun, “Is the cure worse

than the disease? overfitting in automated program repair,” in ESEC/FSE,
2015, pp. 532–543.

[20] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for
simple program repairs,” in ICSE, 2015, pp. 448–458.

[21] S. P. Reiss, “Semantics-based code search,” in ICSE, 2009, pp. 243–253.
[22] F. Long and M. Rinard, “Automatic patch generation by learning correct

code,” in POPL, 2016, pp. 298–312.
[23] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: effective

object oriented program repair,” in ASE, 2017, pp. 648–659.
[24] DARPA MUSE, “DARPA MUSE repository,”

https://www.darpa.mil/program/mining-and-understanding-software-
enclaves, 2016.

[25] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in ICSE, 2016, pp. 691–
701.

[26] A. Hill, C. S. Păsăreanu, and K. T. Stolee, “Automated program repair
with canonical constraints,” in ICSE-Companion, 2018, pp. 339–341.

[27] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in ISSTA, 2018,
pp. 298–309.

[28] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: fixing 55 out of 105 bugs for $8
each,” in ICSE, 2012, pp. 3–13.

[29] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei, “Fixing
recurring crash bugs via analyzing q&a sites (t),” in ASE, 2015, pp.
307–318.

[30] X. Liu and H. Zhong, “Mining stackoverflow for program repair,” in
SANER, 2018, pp. 118–129.

[31] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of software
regressions,” in ICSE, 2015, pp. 471–482.

[32] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair with
quantitative objectives,” in CAV, 2016, pp. 383–401.

[33] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,” in
ESEC/FSE, 2017, pp. 593–604.

[34] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in PLDI, 2013,
pp. 15–26.

[35] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. Lamelas, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic Repair of Condi-
tional Statement Bugs in Java Programs,” TSE, pp. 34–55, 2016.

[36] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in ICSE, 2017, pp.
416–426.

[37] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in ICSE, 2018,
pp. 1–11.

[38] R. Rolim, G. Soares, D. Loris, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B. Hartmann, “Learning syntactic program transforma-
tions from examples,” in ICSE, 2017, pp. 404–415.

[39] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in ESEC/FSE, 2017, pp. 727–739.

[40] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roychoud-
hury, “Semantic program repair using a reference implementation,” in
ICSE, 2018, pp. 129–139.

[41] R. van Tonder and C. Le Goues, “Static automated program repair for
heap properties,” in ICSE, 2018, pp. 151–162.

17

Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:09:05 UTC from IEEE Xplore. Restrictions apply.

