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This paper presents our approach proposed to detect and create indivisible multi-hunk bugs, an evaluation

of existing repair techniques based on these bugs, and a study of the patches of these bugs constructed by

the developers and existing tools. Multi-hunk bug repair aims to deal with complex bugs by �xing multiple

locations of the program. Previous research on multi-hunk bug repair is severely misguided, as the evaluation

of previous techniques is predominantly based on the Defects4J dataset containing a great deal of divisible

multi-hunk bugs. A divisible multi-hunk bug is essentially a combination of multiple bugs triggering di�erent

failures and is uncommon while debugging, as the developer typically deals with one failure at a time. To

address this problem and provide a better basis for multi-hunk bug repair, we propose an enumeration-based

approach IBugFinder, which given a bug dataset can automatically detect divisible and indivisible bugs in

the dataset and further isolate the divisible bugs into new indivisible bugs. We applied IBugFinder to 281

multi-hunk bugs from the Defects4J dataset. IBugFinder identi�ed 139 divisible bugs and created 249 new

bugs among which 105 are multi-hunk.

We evaluated existing repair techniques with the indivisible multi-hunk bugs detected and created by

IBugFinder and found that these techniques repaired only a small number of bugs suggesting weak multi-hunk

repair abilities. We further studied the patches of indivisible multi-hunk bugs constructed by the developers

and the various tools with a focus on understanding the relationships of the partial patches made at di�erent

locations. The study has led to the identi�cation of 8 partial patch relationships, which suggest di�erent

strategies for multi-hunk patch generation and provide important implication for multi-hunk bug repair.
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1 INTRODUCTION

Debugging is laborious. Automated program repair (APR) holds the promise of automatically
�xing software bugs to signi�cantly reduce the cost of debugging. Over the years, many APR
techniques [26, 49, 88] have been proposed. They adopt various strategies to achieve the goal
and have been generally classi�ed as pattern-based (e.g., [35, 42]), search-based (e.g., [31, 69]),
constraint-based (e.g., [46, 77]), and learning-based [88] techniques. With the rise of Large Language
Models (LLMs), recent APR techniques [32, 52, 59, 71, 73] have shown great potential in �xing a
single location of the program for bug correction.
Despite the remarkable progress made, APR is still far from being practically adopted for real-

world debugging. A key reason has to do with its weakness in addressing complex multi-hunk bugs
whose repair requires correcting multiple, non-contiguous code sections generally referred to as
code hunks [57]. There has been evidence [34, 89] showing that multi-hunk bugs are common. In
particular, Zhong and Su [89] found that at least 40% of real bug �xes require changes of more
than one source �le. The percentage of multi-hunk �xes should be higher, as their result does not
account for changes a�ecting multiple locations in one source �le. This result implies that APR
techniques that do not support multi-hunk repair can only handle a limited fraction of real bugs and
have limited usefulness. To further extend the repair scope of APR, various multi-hunk-oriented
techniques have been proposed [39, 41, 46, 57, 70, 80, 83]. They achieve multi-hunk repair via
strategies such as evolutionary search [39, 83], detection and update of evolutionary siblings (where
similar �xes can be applied) [57], variational execution [70], deep learning [36, 41], and iterative
self-supervised training [80].

Current research onmulti-hunk bug repair su�ers from twoweaknesses. First, existing techniques
were often evaluated on the Defects4J dataset [34], which is deeply �awed for multi-hunk repair
evaluation, as about half (or 49.5% according to our result) of the multi-hunk bugs contained in
the dataset are divisible. A divisible bug is essentially a combination of multiple independent bugs
triggering di�erent failures. Repairing a divisible bug by handling multiple failures at the same time
is uncommon for debugging [37, 51], as a developer typically deals with one failure at a time [37, 51].
The e�ectiveness of divisible bug repair also does not re�ect the core abilities of APR in patching
multiple locations to address complex bugs. This is because for a divisible bug an APR technique
can easily detect a promising patch that it generates by checking whether the patch can resolve
any of the failures. Once identifying a promising patch, the APR technique can further build on the
patch for bug correction, which ensures a signi�cantly reduced search space. In general, however,
promising patches are never easy to detect, as they may not indicate any obvious repair progress
(consider a patch that only adds the de�nition of a variable needed for repair).

Second, while there have been e�orts made towards addressing multi-hunk bugs [39, 41, 46,
57, 70, 80, 83], the very key questions related to the generation of multi-hunk patches are still
left unanswered. Most importantly, it remains unclear why repairing a multi-hunk bug needs to
address multiple locations, what are the characteristics of the �xes made at di�erent locations, and
furthermore what strategies one should consider for multi-hunk patch generation based on the
various characteristics. Answers to these questions are important, as they can provide insights into
e�ective multi-hunk patch generation to advance the state of the art.

In this paper, we propose our solutions to address the two weaknesses. Our �rst e�ort is dedicated
to detecting and creating indivisible multi-hunk bugs to provide a better basis for multi-hunk repair
research. We propose an enumeration-based approach IBugFinder (Indivisible Bug Finder). Given a
bug dataset, which includes for each bug the original program, the test cases, and the developer
patch (ground-truth �x), IBugFinder identi�es multi-hunk bugs, determines the divisibility of each,
and further isolates the bugs detected as divisible to create new indivisible bugs. We implemented
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IBugFinder and applied it to all the 281 multi-hunk bugs from six projects in the Defects4J-v2.0
dataset used to evaluate most existing APR techniques. IBugFinder determined 139 (49.5%) multi-
hunk bugs as divisible, 118 bugs as indivisible, and the remaining as unknown due to bug complexity
and deprecation. Furthermore, it isolated the divisible bugs and created 249 new indivisible bugs,
among which 105 are multi-hunk. We released these 249 new bugs in the CatenaD4J dataset we
created, which is accessible at [10]. For each bug, we created a Defects4J-style command-line
interface to download, compile, and test these bugs and obtain the bug information and metadata.
We believe that CatenaD4J not only serves as a benchmark for tool evaluation but also provides an
important basis to motivate the design and implementation of new multi-hunk repair techniques.
While we have applied IBugFinder to Defects4J for indivisible bug detection and creation, it is
worth noting that the approach is also applicable to other datasets [19, 43, 55], which we plan to
investigate in future work.
Since no previous assessment of APR techniques has focused on indivisible bug repair, we

evaluated existing techniques on all the indivisible multi-hunk bugs identi�ed and created. For the
original 118 Defects4J indivisible bugs, we compared the repair results of 14 existing techniques
including 5 multi-hunk techniques [41, 57, 70, 80, 83] and 9 SOTA single-hunk techniques. For the
other 105 indivisible bugs newly created, we ran 7 of the techniques to repair them. Our results
showed that current APR techniques repaired only a small number of indivisible bugs. The best
multi-hunk technique can repair at most 5 bugs and is outperformed by advanced single-hunk
techniques, which can produce single-hunk and single-hunk-alike patches that are semantically
equivalent to the multi-hunk patches provided by developers. We discussed the limitations of
existing techniques and showed that current techniques repaired half as many indivisible multi-
hunk bugs as divisible multi-hunk bugs.
To gain insights into e�ective multi-hunk patch generation, we conducted a study that comes

in two parts. For the �rst part, to understand why an indivisible bug needs multiple �xes done
at di�erent locations and the role each �x plays to tackle the failure, we sampled 75 indivisible
bugs from those found and created by IBugFinder. For each bug, we identi�ed the hunks to repair,
analyzed the �xes created for the hunks, and characterized the behavioral (semantic) relationships
of the �xes. The result is a total of 8 behavioral relationships. We gave examples to describe the
relationships and showed their frequencies.
A key implication is that the patch behavioral relationships suggest di�erent repair strategies.

We sketched the strategies, which we believe provide important insights into e�ective multi-hunk
patch generation. For example, one relationship original-and-new-problem-�x suggests performing
iterative patch generation to �x the original problem �rst, identify new problems raised (e.g., new
exceptions thrown), and produce new patches to address them. This strategy can be used to tackle
the Chart_15 bug that none of the multi-hunk approaches [39, 41, 46, 57, 70, 80, 83] have correctly
repaired. For this bug, the failure is a null-pointer exception. By addressing the exception with a
null-checker and having a problem detector that checks program execution, an APR technique
would tell that a partial patch resolves the exception and allows the intended execution to continue.
Later, it could build on the promising partial patch to deal with the new problem manifested as
another null-pointer exception. Existing iterative approaches [80, 83] do not repair the bug, as they
use weak guidance by checking for example the number of failing tests, which in this case does not
change even with the promising (correct) partial repair.

For the second part of the study, we analyzed the behavioral relationships of patches generated
for bugs correctly repaired by tools from our previous evaluation. We found that current tools
can only handle simple multi-hunk bugs by generating single-hunk or single-hunk-alike patches,
con�rming their immaturity in patching di�erent locations for complex bug repair.
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The main contributions of this paper are as follows:

• An enumeration-based approach for detecting and creating indivisible multi-hunk bugs.
• An augmented dataset of indivisible bugs.
• An evaluation of existing repair techniques with the indivisible multi-hunk bugs.
• A study of patch behavioral relationships that provides guidance for multi-hunk bug repair.
• An analysis of the patch relationships for bugs correctly repaired by various tools.
• An artifact including the source code of IBugFinder, the new dataset, the study result, and
the repair tools and test scripts used in the evaluation available at [6].

The rest of the paper is structured as follows. Section 2 presents IBugFinder along with the
indivisible bug detection and creation experiment and the result. Section 3 presents our evaluation
of existing APR techniques. Section 4 shows the study of multi-hunk �xes. Sections 5 and 6 discuss
the threats to validity and the related work. Finally, Section 7 presents our conclusions and potential
directions for future work.

2 INDIVISIBLE BUG DETECTION AND CREATION

We �rst use an example to intuitively describe what a divisible bug is and why it is not interesting.
Next we give the de�nitions of divisible and indivisible bugs and other related terms. Then we
show the algorithm that IBugFinder uses to determine bug divisibility and create indivisible bugs.
Finally, we present the new bug dataset.

(a) First partial patch.

1@Override

2public OpenMapRealVector ebeDivide(RealVector v) {

3 checkVectorDimensions(v.getDimension());

4 OpenMapRealVector res = ...;

5 - Iterator iter = entries.iterator();

6 - while (iter.hasNext()) {

7 - iter.advance();

8 - res.setEntry(...);

9 - }

10 + final int n = getDimension();

11 + for (int i = 0; i < n; i++) {

12 + res.setEntry(...);

13 + }

14 return res;

15}

(b) Second partial patch.

1@Override

2public OpenMapRealVector ebeMultiply(RealVector v) {

3 checkVectorDimensions(v.getDimension());

4 OpenMapRealVector res = ...;

5 Iterator iter = entries.iterator();

6 while (iter.hasNext()) {

7 iter.advance();

8 res.setEntry(...);

9 }

10 + if (v.isNaN() || v.isInfinite()) {

11 + final int n = getDimension();

12 + for (int i = 0; i < n; i++) { ... }

13 + }

14 return res;

15}

Fig. 1. Developer patch for the divisible multi-hunk bug Math_29.

2.1 Motivation

We take the divisible Math_29 bug from the Defects4J dataset for example. Figure 1 shows for
this bug the developer patch consisting of two partial patches made at two locations, one (left
�gure) at method ebeDivide for performing vector-based element-by-element division and the other
(right �gure) at method ebeMultiply for element-by-element multiplication. The �rst partial patch
(??0C1) created for ebeDivide rewrites the original iterator-based loop (lines 6–9) scanning non-zero
entries (enforced by line 7) into a new loop (lines 11–13) that allows the division of two zeros and
uses NaN as the result. By skipping the zero entries, the original loop implicitly sets the division
result of two zeros as 0, which is incorrect. The second partial patch (??0C2) made at ebeMultiply

is needed to give special treatment for elements whose values are NaN and positive and negative
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in�nities (lines 10–13). To �x Math_29, one has to tackle two failures (51 and 52) exposed by two
sets of failing test cases, one for testing ebeDivide (51) and the other for ebeMultiply (52). The two
failures are independent. As long as ??0C1 is applied to ebeDivide, 51 will be resolved, regardless of
whether ??0C2 is made or not. Likewise, as long as ??0C2 is made for ebeMultiply, 52 will disappear,
irrespective of ??0C1.
The above analysis shows that Math_29 is actually a multi-failure bug. It is divisible and can

be decomposed into two single-hunk bugs, which trigger 5 1 and 5 2 and can be addressed by two
single-hunk patches ??0C1 and ??0C2 respectively. Repairing a divisible bug by addressing multiple
failures simultaneously is uncommon, as in real debugging scenarios, a developer typically deals
with one failure at a time [37, 51]. To repair Math_29, one would just look at one of 51 and 52,
tackle it, and then work on the other. In this case, bug repair is performed as multiple single-hunk
patch generation tasks. Repairing a divisible bug is not very interesting. As long as one location is
correctly patched, one can see a failure resolved and continue �xing the other locations. This is not
what one typically encounters for complex bug repair where a correct partial patch may not show
any obvious progress.

2.2 Definitions

We next introduce the terms and give the de�nition of divisible and indivisible bugs.
Single-hunk and multi-hunk bugs. The repair of a single-hunk bug requires code edits done

at a single location represented as one or a sequence of contiguous code lines referred to as a code
hunk. Repairing a multi-hunk bug requires edits done at multiple locations that are not contiguous.
Patch and partial patches. A patch represents a set of code edits needed for bug repair. For a

multi-hunk bug, a patch consists of multiple partial patches, each done at a single location. For a
single-hunk bug, because there is only one location to repair, there is only one partial patch, which
is equivalent to the patch.

In practice, given the buggy and the �xed programs, we used the git di� utility [25] to perform a
line-by-line comparison of two programs’ source �les to identify all the locations repaired and the
corresponding partial patches.

Partial program and sub-program. Given a buggy program ? and its �xed program ?′, one can
obtain a set of partial patches %�) = {?0C1, ?0C2, . . . , ?0C=} by comparing the source �les of ? and
?′ (via for example a di� algorithm). We de�ne a partially repaired program, or a partial program,
?′′ to be a program that one can get by applying to ? the partial patches of %�) ′, which is a subset
of %�) and is non-empty. When ?′′ is a partial program, we also say that ?′′ is a sub-program of ?′,
the fully repaired program. Note that in our de�nition ? and ?′ are not sub-programs of ?′.
Positive and negative test cases. Given a buggy program ? , the �xed program ?′, and a set

of test cases ) , we use %) to denote the subset of ) that ? passes and refer to %) as the positive
test cases. Similarly, we use �) to denote the subset of ) that ? fails to pass and refer to �) as the
negative test cases. When �) is not empty, we know ? has a bug. Typically, %) is also not empty to
allow the detection of invalid patches introducing regressions.

Divisible, indivisible, and isolated bugs. Given a buggy program ? , the �xed program ?′, and
a set of test cases ) , which is a union of %) and �) (the positive and negative test cases), we say
that ? (or the bug) is divisible, or 38E (?, ?′, %) , �) ), if there is a partially repaired program ?′′, a
sub-program of ?′, that can e�ectively resolve at least one of the failures by passing not only all
the positive test cases but at least one negative test case. Formally, we have

38E (?, ?′, %) , �) ) i� ∃?′′ ∈ (*�(?′). (><4%0BB (?′′, �) ) ∧�;;%0BB (?′′, %) ),

where (*�(?′) is the set of all sub-programs of ?′, (><4%0BB (?′′, �) ) denotes that ?′′ passes some
of the test cases in �) , and �;;%0BB (?′′, %) ) denotes that ?′′ passes all of the test cases in %) , Note
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that in our de�nition, the divisibility of a bug is not determined by any partial program that fails
for any of the positive test cases, indicating regression, regardless of whether it passes negative
test cases or not. We say that ? (or the bug) is indivisible if it is determined as not divisible.

When ? is divisible, one may obtain an isolated bug exposed by the resolved failures. Let us say
that ?′′ is a partial program that is found to have e�ectively resolved some failures by passing
a subset of negative test cases �) ′ ⊆ �) and all the positive test cases %) . In this case, one can
identify an isolated bug of ? exposed by �) ′. For this bug, the �xed program is ?′′, and one can use
) ′, a union of �) ′ and %) , as the test cases for bug-exposing and regression-testing. Note that an
isolated bug can still be divisible. IBugFinder however only generates indivisible isolated bugs.

2.3 Algorithm

This section shows the algorithm of IBugFinder for divisible bug detection and isolation. The same
algorithm can also detect indivisible bugs and create new indivisible bugs by isolating divisible bugs.
We �rst provide the bug isolation principle, then describe the algorithm in detail, and �nally discuss
test minimization, a component of the algorithm that increases the opportunities for detecting
divisible bugs.
Principle. As discussed in Section 2.2, a bug is divisible if there is a partial program that can

e�ectively resolve some failures by passing all the positive test cases and at least one negative
test case. Given a buggy program ? and its �xed program ?′, IBugFinder �nds and enumerates all
partial programs of ?′ to determine if any of the programs can e�ectively resolve any of the failures.
If there is a partial program ?′′ that e�ectively resolves a failure, the bug is determined as divisible.
To further decide whether a new bug can be created based on ?′′, IBugFinder has to determine if
?′′ is still divisible, and if not, creates a new bug based on ? , ?′′, and the failures resolved.

To understand this, consider Chart_18 for example. For this bug, we generated a partial program
?6 by having two of the partial patches ?0C1 and ?0C2 applied to the original program ? . We found
that ?6 passed two of the negative test cases C4 and C5 while also passing all the positive test cases,
and thus determined Chart_18 as divisible. We however did not create a new indivisible bug based
on ?6, as we found that two of its sub-programs ?2 (derived by having ?0C1 applied to ?) and ?3
(generated by having ?0C2 to ?) can pass C5 and C4 respectively. This means that ?6 is still divisible
and can be further isolated into ?2 and ?3. For this reason, ?6 is omitted for new bug creation.

IBugFinder’s approach could have be applied to the original test cases for indivisible bug detection
and creation. This however would not be ideal, as a test case often contains more than one assertion,
and IBugFinder would miss the opportunities to identify partial programs that fail to pass a negative
test case as a whole but are able to pass an increasing number of assertions. To further increase
the opportunity of divisible bug detection, IBugFinder performs test minimization to split a test
case having multiple assertions into multiple test cases each with one assertion. We will detail the
process at the end of this section.

Description. Algorithm 1 presents the detailed algorithm for divisible bug detection and isolation.
IBugFinder is designed to be applied to an existing bug dataset. The main procedure detectAndIsolate
takes as input the original buggy program ?1, the �xed program ?5 (based on the developer patch),
the set of test cases) , and two thresholds<0G_C and<0G_? used to avoid running for too long and
processing too many partial programs raising memory issues. As output, the procedure generates
a set of newly isolated bugs, each represented as a tuple < ?1, ?0C, �)?0C , %) > where ?1 is the
original buggy program, �)?0C is a subset of negative tests proving that ?1 has a bug, ?0C is the patch
for bug repair, and %) is the set of original positive test cases for regression testing. By applying
?0C to ?1, one can get a �xed program ? 5 ′ for this bug. Note that for an indivisible bug, �)?0C
can contain multiple failures. They are however homogeneous in that none of the sub-programs of
?5 ′ can e�ectively resolve any of these failures by passing some tests in �)?0C without failing any
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Algorithm 1: The algorithm of divisible multi-hunk bug detection and isolation.

1 Procedure 34C42C�=3�B>;0C4(?1,?5 ,) ,<0G_C ,<0G_?):
2 ( ← ∅;

3 %�) ← identifyPartialPatches(pb, pf ) ; // Identified by the diff utility

4 if %�) .B8I4 ( ) ≤ 1 then return ( ;

5 ) ← minimize(T);

6 < �) , %) >← runTests(pb, T);

7 < %%�)(_(�), 4Gℎ0DBC >← getPowerSetOfPartialPatches(PAT, max_p);

8 %%�)( ← rankIntoList(PPATS_SET);

9 � ← { }; // A working set

10 �.0??4=3 (< ∅, “D=DB43”, �) >) ;

11 BC8<4 ← getCurrentTime();

12 for %%�) in %%�)( do
13 if getCurrentTime() − BC8<4 ≥ <0G_C then
14 4Gℎ0DBC ← 5 0;B4 ;

15 Break;

16 end

17 ?5 ′ ← applyPatchToProgram(pb, PPAT) ; // Apply the partial patches to ?1

18 if ?5 ′ does not compile then
19 �.0??4=3 (< %%�), “D=DB43”, {} >) ;

20 else
21 < �) _%� ′, %) _%� ′ >← runTests(pf’, T);

22 if !isSubsetOf(FT_PF’, FT) then
23 �.0??4=3 (< %%�), “D=DB43”, �) _%� ′ >) ;

24 else
25 �) _%�((�� ← �) \ �) _%� ′ ;

26 �) _%�((�� ← 64C�08;8=6)4BCB%0BB43(>;4;~�~)0A64C%A>6A0< (�) _%�((��, ? 5 ′, ?1,�, �) ) ;

27 if �) _%�((�� ≠ ∅ then
28 ( ← (

⋃
{< ?1, %%�), �) _%�((��, %) >} ; // New bug found

29 �.0??4=3 (< %%�), “DB43”, �) _%� ′ >) ;

30 else
31 �.0??4=3 (< %%�), “D=DB43”, �) _%� ′ >;

32 end

33 end

34 end

35 end

36 if ( == ∅ and !4Gℎ0DBC then ( ← { 3D<<~_CD?;4 } ;

37 return ( ;

38 end

39 Procedure 64C�08;8=6)4BCB%0BB43(>;4;~�~)0A64C%A>6A0<(�) _%�((�� , ?5 ′ , ?1,� , �) ):
40 (*�_%� ′ ← getSubPrograms(pf’) ; // Get all the sub-programs of ?5 ′

41 for BD1_?5 ′ in (*�_%� ′ do
42 (*�_%%�) ← identifyPartialPatches(pb, sub_pf’) ; // Identified by the diff utility

43 �) _(*�%� ′ ← ∅;

44 for 4;4< in� do
45 if 4;4<.64C!014; ( ) == “DB43” and 4;4<.64C%0A%0C2ℎ4B ( ) == (*�_%%�) then
46 �) _(*�%� ′ ← �) _(*�%� ′

⋃
4;4<.64C�08;8=6)4BCB ( ) ;

47 end

48 end

49 �) _(*�_%�((�� ← �) \ �) _(*�%� ′ ;

50 �) _%�((�� ← �) _%�((�� \ �) _(*�_%�((�� ;

51 end

52 return �) _%�((�� ;

53 end

tests in %) . If the set of isolated bugs as output is empty, the original bug is indivisible. If the bug
divisibility cannot be determined due to non-exhaustive search, the output is a set containing a
dummy tuple.

IBugFinder starts with comparing ?1 and ?5 to identify the partial patches (line 3), minimizing
the test cases (line 5), which we will detail later in this section, and identifying the negative and
positive test cases (line 6). It simply skips single-hunk bugs which are by de�nition indivisible
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(line 4). Based on the partial patches %�) identi�ed, IBugFinder computes a powerset %%�)(_(�)
where each element is an non-empty subset of %�) that can be used to generate a partial program,
and it checks whether %%�)(_(�) exhaustively includes all subsets and saves the result in 4Gℎ0DBC
(line 7). IBugFinder ranks the elements of %%�)(_(�) by the number of partial patches contained
in each element from low to high into a list %%�)( (line 8). By examining the elements in %%�)(

from the beginning to the end, IBugFinder is guaranteed to look at B1 before B2, if the number
of partial patches contained in B1 is not greater. This ensures that IBugFinder always checks the
sub-programs of ? before ? itself.
IBugFinder uses a working set � (line 9) to save some properties of partial programs that have

been processed. Speci�cally, for each partial program ?? , a tuple < %%�), ;, �)_%% > is saved in
� , where %%�) is the partial patches used to generate ?? , ; is a label (either “used” or “unused”)
showing whether ?? has been used to create a new bug or not, and �)_%% is the set of test cases
that ?? fails to pass. IBugFinder uses � to examine, for a partial program, each of its sub-programs
that have been processed to determine if the partial program is divisible or not.� is initialized with
a tuple of the original buggy program’s properties (line 10).

A loop (lines 12–35) is used to enumerate the elements in %%�)( , where each element %%�) is
a subset of partial patches in %�) . The loop breaks if the time budget is used up, in which case,
the search is not exhaustive (lines 13–16). For each %%�) , IBugFinder obtains the corresponding
partial program ?5 ′ by applying %%�) to ?1 (line 17). It next compiles and tests ? 5 ′ (lines 18–20).
If ? 5 ′ fails for all negative tests in �) or any positive tests not in �) (line 22), ?5 ′ does not reveal
divisibility and is not used for new bug creation (line 23). Otherwise, ?5 ′ represents a partial
program that e�ectively resolves some of the original failures indicating the bug is divisible. To
further determine the eligibility of using ? 5 ′ to create a new bug, IBugFinder enumerates all the
sub-programs of ? 5 ′ to compute �)_%�((�� , a set of negative tests solely passed by ?5 ′ and
not by any of its sub-programs (lines 25–26). If �)_%�((�� is not empty, which means there are
failures that can only be e�ectively resolved by ? 5 ′ and not by its sub-programs, IBugFinder creates
a new bug with the partial patches %%�) that result in ?5 ′ and the failures exposed by �)_%�((��
(line 28). Otherwise, because there is no failure that cannot be addressed by its sub-programs,
IBugFinder can use the sub-programs to create new bugs and thus skips ?5 ′.
To compute �)_%�((�� , IBugFinder initializes it as all the negative tests passed by ?5 ′ (line

25), and then invokes the procedure shown in lines 39–53 to enumerate the sub-programs and
update �)_%�((�� . IBugFinder gets all the sub-programs of ? 5 ′ by generating the powerset
of %%�) , partial patches that result in ?5 ′, applying each element in the powerset to ?1 to get
a partially repaired program, and �nally collecting all these programs. It enumerates each sub-
program BD1_?5 ′, gets the partial patches by comparing it with ?1 via the di� utility, checks
whether it has been used for bug creation, and if so, excludes from �)_%�((�� the negative tests
�)_(*�_%�((�� passed by BD1_? 5 ′ (lines 41–51).
Tests minimization. The idea of test minimization is to split a test case containing multiple

assertions into multiple minimized test cases, each containing one assertion. One possible approach
to achieving minimization would be (1) �nding the assertions in the test case; (2) identifying, for
each assertion, all the test code (from within the test case and from all the other test methods); and
(3) creating newminimized test cases, each containing one of the assertions and all the test code that
can a�ect the assertion. It is however challenging to automate and implement this approach, as for
(2), the approach needs to deal with interprocedural analysis (maybe via a dynamic interprocedural-
based slicing method) to e�ectively identify test code that can a�ect the assertion result while
accounting for possibly complex language features. Moreover, step (3) can be complicated by the
fact that the test code a�ecting an assertion can be from another assertion (that has side e�ect), in
which case, one cannot easily keep the two assertions apart for creating minimized tests.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 121. Publication date: July 2024.



Detecting, Creating, Repairing, and Understanding Indivisible Multi-Hunk Bugs 121:9

Table 1. Statistics of the original Defects4J multi-hunk bugs and the newly isolated bugs.

Project
Original (Multi-Hunk) Isolated

#Total #Div #InDiv #Ukn #Total #Multi #Single

Chart 13 10 3 0 29 7 22
Closure 113 52 48 13 79 41 38
Lang 40 22 17 1 40 20 20
Math 70 38 26 6 58 20 38
Mockito 25 5 17 3 21 2 19
Time 20 12 7 1 22 15 7

All 281 139 118 24 249 105 144

What IBugFinder used for test minimization is an activation-based approach. It works by (1)
identifying all the assertions in a test case and then (2) creating minimized test cases, each of which
is identical to the original test case, except that only one assertion is kept active and the others are
made inactive by the try-catch exception handling mechanism. Speci�cally, for (1), IBugFinder looks
for statements in the test case that are calls to the JUnit assertion methods (such as assertEquals)
that are de�ned in the JUnit assert package (org.junit.Assert and junit.Assert) and calls to other
test methods that directly or indirectly (via nested method calls) use the JUnit assertion methods.
It can also identify other assertion methods directly used in the test case but are not from JUnit
library (e.g., assertThat from Hamcrest library) via string pattern-matching. For (2), to create a
minimized test case, IBugFinder chooses one of the assertions from the original test case to be
active and keeps the assertion as it is. For each of the other assertions B , IBugFinder replaces B with
a new statement B′, which wraps B with a try-catch structure as try {s} catch(Throwable

__SHOULD_BE_IGNORED){}. In this way, when a minimized test case is run, an inactive as-
sertion B can still be executed (so that the testing work done in B , which may a�ect the following
assertions, can still be performed), but any failure triggered by the execution of B will be caught
and ignored to ensure that the test case execution is not killed by the failure.
Note that IBugFinder does not have to minimize positive test cases. This is because a partial

program that can be used to prove divisibility has to pass all the positive test cases including all
the assertions. Minimized positive tests containing “separated” assertions do not create any new
opportunities for divisible bug detection and isolation.

2.4 The Experiment of Indivisible Bug Detection and Creation and the Result

We implemented IBugFinder and applied it to all the multi-hunk bugs from six of the projects (Chart,
Closure, Lang, Math, Mockito, and Time) in the Defects4J-v2.0 dataset that has been widely used for
evaluating various APR techniques [26, 44, 88]. The detection-and-isolation process is automated.
We note again that because IBugFinder has to enumerate and test all possible partial programs, the
process can be costly. To ensure feasible bug detection and isolation, IBugFinder considered for
each bug at most 2048 (max_p in Algorithm 1) partial programs to test to avoid out-of-memory
errors and ran the isolation process for at most one hour (max_t). We found that a large fraction
(∼81%) of the bugs have no more than 5 hunks to repair, and IBugFinder has successfully determined
the divisibility of 257 (over 91%) bugs. The experiment was performed on machines with 16 Intel
i9-11900K 3.5 GHz CPUs, NVIDIA RTX A4000/5000 GPUs of 16/24 GB, and 128 GB RAM and run
Ubuntu-20.04.

Table 1 presents the result. It shows for each project and for all the numbers of multi-hunk bugs
(#Total under Original), the numbers of divisible (#Div) and indivisible (#InDiv) bugs detected, and
the number of bugs whose divisibility is unknown (#Ukn) due to the incapability of partial program
enumeration and bug deprecation (Time_21). It also shows the numbers of isolated bugs (#Total
under Isolated) and multi-hunk (#Multi) and single-hunk (#Single) bugs. One can see that about a
half (139/281=49.5%) of the original Defects4J bugs are divisible (column #Div). IBugFinder created
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249 new bugs, among which 105 bugs are multi-hunk (column #Multi). It failed to determine the
divisibility of 23 (or 8.1%) bugs. 22 of them are from three projects (Closure, Math, and Mockito) for
which testing runs slow. These are the bugs with many hunks to repair (median is 12).

3 TOOL EVALUATIONWITH INDIVISIBLE BUGS

We evaluated state-of-the-art APR techniques with the 118 original and 105 isolated bugs to
investigate the e�ectiveness of existing techniques in repairing indivisible multi-hunk bugs. The
section presents the experiment and the results.

3.1 Experiment Setup

For the 118 original Defects4J bugs, we looked for the repair results reported in the evaluation of 14
existing APR techniques including the 5 multi-hunk-oriented techniques ARJA-e [84], DEAR [41],
Hercules [57], ITER [80], and VarFix [70] and 9 other SOTA techniques that are LLM-based (Al-
phaRepair [72]), NMT-based (e.g., Recoder [91]), search-based (e.g., SimFix [31]), constraint-based
(e.g., Nopol [77]), and pattern-based (e.g., TBar [42]). We did not include other tools for example
ChatRepair [73], Repilot [68], KNOD [33], TENURE [48], and MCRepair [36], as for these tools,
we did not �nd the ids of the bugs reported as correctly or plausibly repaired with realistic fault
localization from either the paper or the released artifact. We also excluded Angelix [46], as the
tool [4] was implemented to repair C programs and cannot be directly applied to a Java benchmark.
For the 105 isolated bugs, because they were not used to evaluate any APR techniques, we

conducted a repair experiment by applying 7 SOTA techniques, which are ARJA-e, Hercules, ITER,
Recoder, SimFix, TBar, and AlphaRepair to these bugs for repair. Among these techniques, ITER,
ARJA-e, and Hercules are SOTA learning-based and search-based multi-hunk-oriented techniques.
Recoder, SimFix, and TBar are SOTA NMT-based, search-based, and pattern-based single-hunk
techniques. AlphaRepair is a SOTA LLM-based technique that performs cloze-style single-hunk
repair. We note that we did include single-hunk tools because they may produce single-hunk
patches that are semantically equivalent to the developer patch addressing multiple hunks.
We contacted the authors of ITER to get the tool (which was not publicly available by our

experiment time but is now released at [29]). For AlphaRepair, ARJA-e, Recoder, SimFix, and TBar,
we used the tools provided by the authors at [2, 5, 53, 58, 64]. Because the Hercules tool is not
available, we implemented it according to the technical description provided in [57]. The tool uses
an Ochiai-based SBFL method [28] to identify faulty locations, the Soot framework [62] to identify
code semantic context via data-�ow analysis, and the ODS tool [15, 50] (rather than ELIXIR’s
ranking tool [56], which is not available) for patch prioritization. For a fair comparison with others,
the tool does not leverage the revision history for repair.
Note that we did not consider all the 14 tools to repair the 105 isolated bugs. We excluded

DEAR [16] and VarFix [66] due to usability issues. We omitted MCRepair, as the tool is not
available [45]. For single-hunk tools, we used Recoder and excluded DLFix [17, 40] and Re-
wardRepair [54, 79], as they are all NMT-based approaches and the latter two techniques were not
more e�ective than Recoder based on both our result (Table 2) and the previous evaluation [79, 91].
We also excluded Nopol, which underperformed the other techniques by a large margin. We did
not include Tare and TransplantFix as we failed to use the tools due to technical problems.

For the experiment of repairing 105 isolated bugs, what we provided for a tool is the bug isolation
result, which is a four-element tuple for a bug (Algorithm 1, line 25), except the patch. Speci�cally,
we provided the original program, the original passing tests, and the bug-exposing failing tests
identi�ed and minimized by IBugFinder. The test minimization, because of using an activation
mechanism to create new tests, can incur additional overhead. The overhead is however empirically
insigni�cant, as the minimization only a�ects a small number of test cases. For an isolated bug used
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Table 2. Repair results for the 118 indivisible multi-hunk bugs presented as x/y where x and y are the numbers

of bugs for which correct patches and plausible patches were generated respectively. Hyphen symbols denote

that the results are not made available. We used the results from the previous evaluation of the tools.

Project
Multi-Hunk-Oriented Techniques Single-Hunk-Oriented Techniques

ARJA-e DEAR Hercules ITER VarFix AlphaRepair DLFix Nopol∗ Recoder RewardRepair SimFix Tare TBar TransplantFix

Chart 1/3 0/- 0/0 0/1 0/0 1/- 0/- 0/2 1/- 0/- 0/0 2/3 1/2 0/-
Closure 0/0 1/- 0/0 0/1 0/4 3/- 0/- 0/17 3/- 0/- 0/0 2/8 2/2 1/-
Lang 1/6 0/- 0/0 2/2 0/0 1/- 0/- 0/0 1/- 0/- 0/0 2/2 0/0 0/-
Math 2/9 1/- 2/2 1/2 0/4 1/- 0/- 0/4 0/- 0/- 0/2 1/9 1/6 1/-
Mockito 0/0 0/- 0/0 0/0 0/0 0/- 0/- 0/0 0/- 0/- 0/0 0/0 0/0 1/-
Time 1/3 1/- 0/0 0/0 0/0 1/- 1/- 0/3 1/- 0/- 1/1 1/1 1/1 0/-

Total 5/21 3/- 2/2 3/6 0/8 7/- 1/- 0/26 6/- 0/- 1/3 8/23 5/11 3/-

∗We referred to [18] to �nd the plausible patches and determined the correctness (not shown in [18]) for relevant bugs.

Table 3. Repair results for the 105 isolated indivisible multi-hunk bugs presented as x/y where x and y are the

numbers of bugs for which correct patches and plausible patches were generated respectively. We ran the

tools to get the results.

Project
Multi-Hunk-Oriented Techniques Single-Hunk-Oriented Techniques
ARJA-e Hercules ITER AlphaRepair Recoder SimFix TBar

Chart 0/5 1/3 0/1 1/3 1/3 1/2 1/3
Closure 0/0 1/3 1/4 2/5 2/5 1/1 3/5
Lang 0/2 0/7 0/1 1/4 0/2 0/0 0/6
Math 0/6 0/4 0/3 0/0 0/5 0/0 0/4
Mockito 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Time 0/0 0/2 1/4 3/6 0/2 0/0 0/2

Total 0/13 2/19 2/13 7/18 3/17 2/3 4/20

in the experiment, there are only a few minimized tests – the average and median numbers are 7.1
and 2. We did not see any noticeable slowdown or validity issues when using the minimized tests.
The experiment was performed on the same machines we used to do bug isolation. Following

the standard experiment settings [41, 57, 80], we ran each tool to repair each bug for a maximum of
5 hours and reported the numbers of bugs for which plausible and correct patches were generated.
We adjusted the default settings and con�gurations of the tools when necessary to ensure a fair
comparison and an optimized use of GPUs (for AlphaRepair and Recoder). More details can be
found at the tool usage repositories accessible from [7]. A patch is plausible if the patched program
passes all the test cases. Following the common practice for evaluation [41, 57, 80], we considered
a patch as correct if it is identical or semantically equivalent to the developer patch. To determine
correctness, two of the authors have independently examined the patches and held discussions
when necessary to reach a consensus. We failed to use ITER and ARJA-e to repair the Mockito
bugs, as according to [80, 83], the tools do not support repairing these bugs. We also excluded the
Closure bugs for testing ARJA-e, as according to [83], the tool does not support repairing them due
to the customized non-JUnit testing format used for these bugs. The machine time used to run the
repair experiment is over 2K hours (83 days). The experiment actually ran for more than 23 days.

3.2 Result

Tables 2 and 3 present the results for the 118 original and the 105 isolated multi-hunk bugs
respectively. According to our results, the best techniques correctly repaired no more than 8
original bugs and 7 isolated bugs. This shows that the repair abilities of existing techniques in
handing indivisible bugs are not strong. Table 2 (column Multi-Hunk-Oriented Techniques, last
row) shows that a multi-hunk tool correctly repaired at most 5 bugs. Together, these tools repaired
9 bugs, among which 6 bugs were done with single-hunk-alike patches. This implies that their
ability in tackling more complex bugs is weak. We had similar observations for the 105 bugs.
Current multi-hunk techniques have various limitations. The search space for multi-hunk bug

repair is often enormous, and ARJA-e’s search strategy, which uses a �tness function that measures
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patch size and failure rate, cannot e�ectively direct the exploration to �nd correct patches. We
note that patch size does not necessarily imply correctness and that for a typical indivisible bug
triggering a single failure, partial patches cannot lead to any failure resolved. For a similar reason,
ITER, which detects failure rate decrease to guide iterative repair is also not good at dealing with
indivisible bugs. Because again the search space is huge, DEAR, which uses a learning method
to perform simultaneous fault localization and code editing, has limited e�ectiveness. Hercules
identi�es evolutionary siblings to narrow the search space. However, as we will show in Section 4.2,
for indivisible bugs, correct partial patches identi�ed as evolutionary siblings are not common,
which weakens the applicability of Hercules. Finally, VarFix is not shown e�ective, as we believe
its variational-execution-based exploration has scalability issues.
Tables 2 and 3 also present the repair results of the single-hunk tools. AlphaRepair and Tare,

repaired more bugs than the multi-hunk tools. We note that this is possible. As we will show in
Section 4.2, many multi-hunk bugs can be repaired with single-hunk-alike patches that, for example,
add an if-check for a block of code in two hunks. It can also be the case that for some bugs there is
a single-hunk patch that is semantically equivalent to the developer multi-hunk patch.
For the 118 bugs, we investigated how existing tools performed with perfect fault localization

(PFL), which assumes that all the repair locations are known. With PFL, single-hunk tools achieved
only slightly better result, and the best tool AlphaRepair correctly repaired 10 bugs. PFL is a strong
assumption for multi-hunk repair, and for only one multi-hunk tool MCRepair, we were able to �nd
the repair result for the 118 bugs. The tool correctly repaired 9 bugs. Because it does not support
non-PFL, we did not include the tool in Table 2.
We also compared how a repair tool deals with divisible and indivisible multi-hunk bugs. We

did this by collecting the repair result for all the 139 bugs identi�ed as divisible and �nding the
numbers of the bugs correctly repaired by the 14 tools from the previous evaluation. The average
numbers of divisible and indivisible Defects4J bugs repaired by the tools are 6.29 and 3.14. This
shows that existing tools can repair twice as many divisible bugs as indivisible bugs.

4 STUDYING AND UNDERSTANDING MULTI-HUNK FIXES

This section presents our study of multi-hunk �xes. It comes in two parts. For the �rst part, we
show the 8 behavioral relationships identi�ed for the developer patches for a set of sampled bugs.
For the second part, we show the relationships for patches of bugs correctly repaired by existing
tools. In this section, we �rst explain how we did the study, then present the results and �ndings of
both parts, and �nally discuss the implications.

4.1 Methodology

For the �rst part of the study, to identify partial-patch behavioral relationships, we analyzed the
developer patches for a variety of multi-hunk indivisible bugs sampled from the Defects4J dataset.
The sampling process is as follows. Because di�erent Defects4J projects have di�erent numbers of
bugs, to ensure diversity, we randomly selected, for each project except Chart, 10 original Defects4J
bugs that are either (a) indivisible or (b) divisible but have isolated indivisible multi-hunk bugs.
For (a), we directly used the bug for study; and for (b), we included all the isolated indivisible
multi-hunk bugs. The Chart project has only 7 original bugs that are within our scope (speci�ed by
a and b), and we included all the indivisible bugs. In this way, we obtained a total of 75 indivisible
multi-hunk bugs.
For each sampled bug, we used the following process to identify the behavioral relationships

contained in the developer patch. We �rst understood the buggy and expected behaviors of the
program and then analyzed the various behaviors with partial patches constructed in di�erent
combinations. This analysis often involved looking into the program states and execution. It was
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largely manual, and the only tool we used is the Eclipse IDE debugger [20]. To make sure that
we had a deep understanding of the program behavior, it was often the case that we used the
debugging mode of the IDE with di�erent breakpoints set up and ran the program stepwise in
multiple rounds. It was based on the behavioral analyses of di�erent bugs we identi�ed the types
of behavioral relationships. One of the authors was responsible for the relationship identi�cation
and another author checked the result.
For the second part of the study, we identi�ed all the 28 bugs correctly repaired by all the

tools reported in Tables 2 and 3. Then for each bug, we followed the above process to analyze its
developer patch and identify the behavioral relationships of the patch. We also gathered from either
the previous evaluation result or our experiment the correct patches generated by the tools and
identi�ed the relationships that exist in those tool-made patches. We did not analyze the patches
for the 118 bugs generated by three techniques, DEAR, Hercules, and VarFix, since we did not �nd
the correct patches from these tools.

4.2 Analysis of the Developer Patches for Sampled Bugs

As a main result of the study, we identi�ed 8 behavioral relationships of partial patches. Below we
�rst describe the relationships with examples and then provide our analysis and other results.
Def-and-use (DU). Partial patches with this relationship add the de�nition of variables, �elds,

packages, or methods and later use what has been de�ned for bug repair. A typical example is the
bug Time_12b1 (isolated from Time_12) whose developer patch consists of two partial patches
used to deal with a failure of incorrectly computing the year to initialize a local date time object, as
shown in Figure 2a. The failure was due to the ignorance of the era (either AD or BC) to decide
how to compute the year. For repair, one partial patch (line 1) adds the de�nition of era, and the
other uses it to compute di�erent year values.
One-action (OA). Partial patches with this relationship can be done in one repair action or

operation. Figure 2b presents an example showing the patch for Chart_26. This patch consists of
two partial patches (lines 1 and 4). They represent one repair action, which is to add an if-statement
wrapping a hunk of code adding labels for chart drawing. Note that a wrapping action is widely
used as a repair pattern for patch generation [42]. All partial patches that we identi�ed as having
this relationship can be generated with a wrapping action (by wrapping a hunk of code with for
example an if, while, or try-catch statement). Depending on the repair actions used, however, one
can have di�erent notions of one-action relationships. Note that a wrapping OA patch can become
single-hunk if any code indentation changes for the wrapped code are also included and considered.

Related-issue-�x (RIF). This relationship indicates that the partial patches are used to address
related issues that arise in di�erent locations. The issues are related due to similar problems (e.g.,
missing null checkers for the same variable) or related concept (e.g., overriding the equals and
hashCode methods). Figure 2c shows three partial patches having the RIF relationship for repairing
Chart_15. The partial patches are used to address related issues having the same problem, which is
not checking the nulless of dataset (the pie chart dataset). Note that in this case the last two
partial patches (lines 6 and 8) also have an OA relationship.

Di�erent-issue-�x (DIF). This relationship indicates that the partial patches address di�erent
issues arising from di�erent program parts that may implement the same functionality. Figure 2d
shows as an example the isolated indivisible bug Lang_62b2 and two partial patches having this
relationship. These partial patches are created to address di�erent issues. The �rst ensures that
one can get the correct entity value (e.g., 12345678) from the entity content (e.g., #x12345678) by
inserting a break at line 5 to avoid a mis-assignment at line 7. The second partial patch ensures
that the entity value is not too big to process. These issues arise from a run that tests the unescape
functionality of HTML/XML string manipulation.
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(a) DU example.

1+int era = calendar.get(Calendar.ERA);

2int yearOfEra = calendar.get(Calendar.YEAR);

3return new LocalDateTime(

4- yearOfEra,

5+ (era == GregorianCalendar.AD ? yearOfEra : 1 -

yearOfEra), ...);↩→

(b) OA example.

1+if (owner != null) {

2 EntityCollection entities =

owner.getEntityCollection();↩→

3 if (entities != null) { ... }

4+}

(c) RIF example.

1public double getMaximumExplodePercent() {

2 +if (this.dataset == null) { return 0.0; }

3 double result = 0.0; ...

4}

5public PiePlotState initialise(...) { ...

6 +if (this.dataset != null) {

7 state.setTotal(...);

8 +} ...

9}

(d) DIF example.

1public void unescape(...) { ...

2 try { switch (isHexChar) {

3 case 'X' : case 'x' : {

4 entityValue = Integer.parseInt(...);

5 +break; }

6 default : {

7 entityValue = Integer.parseInt(...);

8 }}

9 +if (entityValue > 0xFFFF) entityValue = -1;

10 } catch (NumberFormatException e) {} ...

11}

(e) EOH example.

1-if (searchChars.indexOf(ch) < 0) {

2+boolean chFound = ...;

3+if (i + 1 < strLen && ...) {

4+ char ch2 = str.charAt(i + 1);

5+ if (chFound && searchChars.indexOf(ch2) < 0) {

6 return i;

7+ }} else {

8+ if (!chFound) { return i; }

9}

(f) SU example.

1public ClassLoaderAwareObjectInputStream(...) {

2 +primitiveTypes.put(``byte'', byte.class); ...

3}

4protected Class<?> resolveClass(...) {

5 +try {

6 return Class.forName(name, false, ...);

7 +catch (ClassNotFoundException cnfe) {

8 +Class cls = primitiveTypes.get(name); ... }}

9}

(g) ONPF example.

1-if (minutesOffset < 0 || minutesOffset > 59) {

2+if (minutesOffset < -59 || minutesOffset > 59) {

3 throw new IllegalArgumentException(...); }

4+if (hoursOffset > 0 && minutesOffset < 0) {

5+ throw new IllegalArgumentException(...); }

(h) FU example.

1+if (this.allowDuplicateXValues) {

2+ add(x, y); return null; }

3XYDataItem overwritten = null;

4int index = indexOf(x);

5-if (index >= 0 && !this.allowDuplicateXValues) {

6+if (index >= 0) {

7 ... }

Fig. 2. Examples of the fix relationships.

Essentially-one-hunk (EOH). Partial patches with this relationship can be considered as a
single-hunk patch. The reasons can be that there is only one partial patch that is semantically
needed and the others are created only to improve readability, that the locations addressed by the
partial patches are physically close and semantically dependent and any partially repaired program
derived from these patches cannot compile, or that the locations are semantically contiguous
(connected with for example comments). Figure 2e shows an EOH patch for an indivisible bug
derived from Lang_30. The repair locations for the two partial patches (lines 1–5 and lines 7–8) are
close and only separated by a single return statement (line 6). In this case, applying either of the
partial patches will result in a repaired program that does not compile. EOH is di�erent from OA
as the patch is not done with one action.
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Fig. 3. Frequencies of the fix relationships identified based on the developer patches for the 75 sampled bugs

(le�) and the 28 bugs repaired by various tools (right).

Setup-and-use (SU). Some of the partial patches are created to do some setup work by updating
a variable, �eld, or method. The others use what has been updated for �xing. For example, the
partial patch shown in line 2 of Figure 2f updates the map primitiveType by adding the classes
for each of the 8 primitive data types of Java along with void. This map is further used by the
second and third partial patches (lines 5, 7, and 8) to resolve the class for the primitives.
Original-and-new-problem-�x (ONPF): Some of the partial patches can �x the original

problem and resolve the original failure. Unfortunately, they also raise new problems triggering
new failures, which can be tackled by other partial patches. Figure 2g presents an example of partial
patches with this relationship to address Time_8b1. The original failure is due to the inability of
the program in handling negative minute o�sets to compute time, and the �rst partial patch (lines
1 and 2) can �x this problem. Unfortunately, the partially repaired program has a new problem,
as it implicitly allows any invalid inputs with positive hour o�sets and negative minute o�sets to
be processed. This problem is newly raised because inputs with negative minute o�sets are not
previously allowed. To �x this problem, the second partial patch adds an if-statement (lines 4 and
5) to check for the invalid cases. Note that ONPF is di�erent from DIF and RIF in that the original
buggy program does not have the new problem, which is only triggered by the partial patches used
to �x the original problem.

Fix-and-undo (FU): In this relationship, some of the partial patches serve as the primary changes
to correct the misbehavior of the program. These partial patches alone are however not enough.
Other partial patches are needed to undo the negative in�uence brought by the previous changes.
Lines 1 and 2 of Figure 2h present a partial patch used to correct a misbehavior of the program that
triggers an index-out-of-bounds exception when adding two-dimensional coordinate points with
duplicated x-values. To �x the problem, the partial patch inserts a new if-statement that directly
adds the coordinate if duplicated x-values are allowed. Because the original program also accounts
for duplicated x-values (line 5), an additional patch (lines 5 and 6) is needed to perform the undo
job, by removing the unnecessary check for cleanup. Note that for FU, all partial patches are needed
to address the (original) problem, which makes it di�erent from ONPF.

The left part of Figure 3 presents in percentage the frequencies of the 8 relationships we identi�ed
for the 75 bugs. It is worth noting that for a complex bug having many partial patches, there can
be more than one relationship. One can see that some of the relationships occur more frequently
than others. In particular, DU and OA are the most frequent relationships with the sum of their
frequencies being 55.4%. This means that �xing a complex bug often involves de�ning new variables,
�elds, or methods or using them from other packages. It also shows that over 26% of the partial
patches can be done with single repair actions. In addition to DU and OA, RIF and EOH also have
high frequencies (10.9% and 9.9%), followed by ONPF, FU, and SU. DIF has the lowest frequency,
which suggests that one can often �x one or a set of related issues to address a single failure.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 121. Publication date: July 2024.



121:16 Qi Xin, Haojun Wu, Jinran Tang, Xinyu Liu, Steven P. Reiss, and Jifeng Xuan

In addition to analyzing the behavioral relationships, we also investigated the syntactic rela-
tionship of partial patches. The way we did this is by using the Hercules tool we implemented to
compare the context similarity of the repair locations addressed by the partial patches to decide
whether they can be considered as evolutionary siblings for simultaneous correction. Our result
shows that for only 9 (12%) of the bugs, the repair locations can all be considered as evolutionary
siblings. The developer patches have the OA relationship for 6 bugs, EOH relationship for two bugs,
and the RIF relationship for one bug. This result implies that, for indivisible bug repair, one should
not generally assume that the repair locations are syntactically similar or related.

4.3 Analysis of the Patches for Tool-Repaired Bugs

We additionally analyzed the behavioral relationships of the developer patches and tool-made
patches for all the 28 bugs correctly repaired by the 14 tools. We identi�ed six relationships that
exist in the developer patches and presented their frequencies in the right part of Figure 3. The
result shows that current techniques do not go far beyond generating single-hunk-alike patches:
About 77% of the patch relationships are OA and EOH, and an advanced single-hunk technique can
already generate patches with these relationships.
For the 28 bugs, the tools generated 116 correct patches in total. 102 (88%) of the patches are

strictly single-hunk, suggesting that many multi-hunk bugs can be addressed by single-hunk
repairs. 11 of the remaining patches have the OA relationship and 1 patch has the EOH relationship.
These are all generated by single-hunk techniques. Finally, ARJA-e generated one ONPF patch for
Lang_34, and ITER generated one for Math_46. For these bugs, the partial patches tackling the
original problem and causing new problems can be easily detected by the test-passing result.

4.4 Implications on Multi-Hunk Repair

Our study has led to important implications for multi-hunk bug repair.
Tailored repair strategies.Akey implication is that one can develop specialized repair strategies

based on the relationships and then apply these strategies to obtain guided exploration for e�ective
multi-hunk repair. As we will show later in this section, specialized strategies can signi�cantly
reduce the search space, much like how patterns enable a restricted search space for single-hunk
repair. We next sketch the possible ways to realize the specialized strategies.
OA and EOH suggest performing one-action and one-hunk operations to deal with multiple

edits. Current advanced single-hunk approaches, especially those based on deep learning and LLMs,
are already capable of generating patches supporting one-action repairs by for example adding an
if-condition wrapping a statement and fairly sophisticated repairs handling the EOH cases.

DU and SU patches are specialized in that they require the import of a class or the de�nition/setup
of a variable, �eld, or method and later use what has been introduced or set up for bug correction.
We noticed that for a multi-hunk patch involving the de�nition/setup and use of local variables,
the repair locations are often physically close. For 85% of the local-variable-related DU and SU
patches we analyzed in the study, the repair locations have a distance of no more than �ve lines of
code. In other cases, the repair locations are far away, but there is often a chance to refactor them
to be close or even contiguous. For example, a variable de�nition can be refactored to be done at
a location closer to the use of the variable, and a method can be inlined. This suggests that one
may start with a single-hunk or single-area repair to do the right functionality correction and later
refactor the repair into multi-hunk partial patches that are possibly far away from one another to
improve readability and performance. This strategy can be realized with the help of LLM-based
repair that handles a local code area [71] together with an automated refactoring approach [65].
It is also possible to generate DU and SU patches iteratively by �rst leveraging single-hunk

approaches to generate a key �x template, which contains for example unde�ned or uninitialized
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variables and then performing initialization or setup for concretization and completion. Existing
intelligent code synthesis [8, 27] and generation [21, 38] approaches can automate the initialization
or setup part. With the pre�x and su�x contexts included for a target location expecting a variable
de�nition where the pre�x shows what code does up to the target location and the su�x contains
the use of the unde�ned variable, a code synthesis/generation approach can generate a de�nition
statement that �ts the context. For example, with a prompt including the pre�x of a containsAny
method that checks whether a CharSequence object contains any characters of a given array,
the su�x containing the code that handles supplementary characters, and an explicit request of
generating variable de�nitions, ChatGPT (with the GPT-3.5 Turbo model) [11] found the correct
de�nitions of csLastIndex and searchLastIndex to repair the Lang_31 bug.
RIF suggests that related issues can be identi�ed and dealt with at multiple locations. A large

fraction of the issues (over 50% of the cases we analyzed) are related in that they are caused
by a similar problem and can be addressed with similar patches. The Hercules’ approach [57]
for detecting and evolving code siblings is promising to tackle this type of similar issues. Other
RIF issues can be addressed with patches constructed with the assistance of refactoring (e.g., to
implement �xes done in di�erent methods with a calling relationship) and the incorporation of
domain knowledge (e.g., to update both the equals and hashCode methods).

Unlike RIF, DIF needs to tackle distinct issues, and a DIF-patch can be constructed via iterative
repair. The strategy iteratively looks for a target location to repair via fault localization, generates
partial patches for that location with for example single-hunk approaches, and veri�es that there
has been some issue validly resolved and goes on addressing the remaining issues. A key challenge
for DIF-based repair lies in the identi�cation of promising patches implying positive progress
towards issue-resolving. In general, repair progress detection is challenging. A promising solution
is to use learning-based methods by for example gathering a set of labeled bug-�x pairs, extracting
a variety of program syntax and semantic features, and training a classi�er for progress inference.
ONPF implies that a partial patch �xes the original problem but unfortunately also causes new

problems. To deal with ONPF, one can use a similar iterative approach that employs single-hunk
approaches to construct patches �xing the original problem, detects any new problem exposed by
the test execution result or indicated by a trained classi�er, and then addresses the new problem.
Finally, FU consists of a primary �x that almost does the right correction and a secondary �x

that cancels out any semantic redundancies. An FU patch can be realized via iterative repair as well
by �rst creating the primary �x with the help of single-hunk-oriented repair and then searching
via dependency analysis for problematic locations causing semantic redundancies and �xing those
locations with for example pre-de�ned patterns designed for code cleanup.
Complexity analysis. The advantage of using specialized repair strategies is that they can

greatly narrow down the search space for addressing a speci�c type of errors. To see this, �rst
consider a full iterative approach C42ℎ5 that iterates : times to �nd a :-hunk correct patch. In each
iteration, it focuses on generating a one-hunk partial patch. Because it does not know where the
bug is, it performs fault localization to identify = candidate locations for independent, single-hunk
repair in each iteration. Suppose that C42ℎ5 generates< single-hunk partial patches for one location.
This results in a total of<= partial patches generated at the end of the iteration. With all partial
patches chained together, in combination, the search space of C42ℎ5 is $ ((<=): ). A specialized
repair technique adopts a tailored strategy to avoid generating partial patches in combination and
thus signi�cantly reduces the search space. Consider a specialized approach C42ℎB for multi-hunk
repair. C42ℎB �rst performs fault localization to identify = candidate locations for independent
single-hunk repair. For each location, it generates< partial patches, and based on each partial
patch, it can proactively produce the remaining (: − 1)-hunk partial patches with an e�ective
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specialized repair strategy. Without generating patches in combination, the specialized strategy
can result in$ (U (: − 1)<) patches, where U approximates the number of partial patches generated
for each hunk with the specialized strategy. With all = locations considered, the search space of
C42ℎB is $ (U (: − 1)<=), which is much smaller than the exponential $ ((<=): ).

The above analysis shows that a single specialized patch generator can result in reduced search
space. To have all kinds of specialized generators used for multi-hunk repair, a simple strategy
would be running all the generators in parallel and gathering all the patches after they are generated.
In this case the search space is still polynomial. More intelligent ways of assembling the specialized
generators include training a multi-classi�er to select the most suitable specialized generators [47]
and using an ensemble approach based on heuristics [90] for generator prioritization. The generators
assembled this way can result in a smaller space. Of course, a complex repair may involve multiple
patch relationships, which means the patches generated by the specialized generators may still
need to be combined. We nevertheless believe that evolutionary algorithms can provide promising
solutions to patch combination to avoid search space explosion. Finally, we note that even realizing
a few strategies targeting the most frequent relationships such as DU, OA, and RIF can be bene�cial.
Improved single-hunk patch generation. Our statistics of behavioral relationships showed

that a signi�cant fraction (over 36%) of the partial patches contain the OA and EOH relationships.
We also showed that the frequent DU patches can emerge as a single-hunk patch �rst and then
be refactored into multi-hunk and that an iterative approach that produces single-hunk partial
patches in multiple steps is promising to construct e�ective multi-hunk patches. These insights
imply that a successful multi-hunk repair hinges on e�ective single-hunk patch construction. To
bene�t indivisible bug repair, single-hunk patch generation should focus on improving the ability
of producing wrapping-based OA patches and generating multi-line edits.
Simultaneous vs. iterative repair. To deal with multi-hunk bugs, simultaneous and iterative

methods have been both proposed by previous work [41, 57, 80]. The former suggests identifying all
the locations that are failure-responsible and then addressing them all at once for patch generation,
whereas the latter uses an iterative method focusing on localizing and repairing only one location
at a time. Our analysis suggested opportunities for both methods to work. To handle a complex bug,
however, we believe that it is extremely challenging to have all the failure-responsible locations
repaired at once and that an iterative method, which follows the divide-and-conquer discipline to
perform location-wise repair, is more promising.

5 THREATS TO VALIDITY

We discuss the potential external, internal, and contruct threats to validity.
External threats. Our study and evaluation are based on the multi-hunk bugs from six projects

in the Defects4J dataset. The results and conclusions may not generalize to other datasets. We
nevertheless think this is a reasonable �rst exploration, as the bugs from the six projects have
been broadly used for evaluating existing approaches. We used the Defects4J-v2.0 framework, as
the IBugFinder tool we developed and some of the APR tools (e.g., Recoder) we tested require
Java-8 or higher versions, which is not compatible with the Defects4J-v1.2 framework. For this
reason, the repair result for the 118 bugs collected from previous evaluation, which is based on the
Defects4J-v1.2 framework, poses a potential threat. We nevertheless note that the threat is minimal,
as by checking the commit ids, we found that only three (<1%) bugs are inconsistent across the
two versions, and only one was included in our evaluation and was not repaired by any tools.
Finally, due to the high cost of program understanding and semantic analysis (Section 4), we used
a sample of 75 bugs to identify the 8 behavioral relationships, and the results and conclusions of
the study may not generalize. We note that the sample, albeit incomplete, is representative. It has
already covered about 1/3 of the 223 (118+105) indivisible bugs, and we drew these bugs from all the
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projects to increase diversity. As we analyzed more and more bugs, we had increasing con�dence
that there would be diminishing gain of �nding new relationships and that the primary conclusion
about the relationship frequency would not change. To test this, we additionally sampled 10 bugs
for analysis and found that the patches are all covered by the 8 relationships and that our primary
conclusion, which implies the dominance of DU and OA patches, still holds.
Internal threats. A �rst threat is that the bug divisibility result may be a�ected by any im-

plementation errors of IBugFinder. We mitigated this threat by carefully testing IBugFinder and
checking the result. We also made the tool and the result available for public review and extensions.
To assess the e�ectiveness of existing techniques, we ran 7 APR tools to repair 105 isolated bugs.
Because the Hercules tool is not available, we faithfully implemented the tool based on the technical
description in [57]. For patch assessment, we manually determined the correctness. To reduce bias,
two of the authors independently checked the patches and held discussions when necessary to
reach a consensus.

Construct threats. First, we used a line-based di� utility to identify partial patches. A line-based
method has its inherent limitation in capturing syntactic code changes, and one could alternatively
use an AST-based di� utility and create a di�erent notion of code hunks based on the changes
of nodes. We note that certain patch relationships such as OA and EOH de�ned in this paper
may not exist in a di�erent context. For example, a common line-based OA patch that adds an
if-wrap may become a single-hunk AST-based patch, as it adds only one node to the tree. Second,
IBugFinder does not consider any partial patches a�ecting a code area that is smaller than a hunk for
divisible bug detection. It can however occur that a single-hunk patch may contain �xes for multiple
bugs. Examining smaller-than-a-hunk partial patches enables deeper exploration for divisible bug
detection. Third, the IBugFinder algorithm has e�ciency limitation and uses two thresholds to
avoid excessive running time and memory use. The e�ciency can be improved by using for example
static analysis to rule out semantically invalid sub-programs and identify patch-a�ecting test cases
for testing. Finally, the test minimization algorithm, because of producing test cases with inactive
assertions, can incur additional testing overhead and a�ect code readability and understandability.
Future research may explore cleanup methods to mitigate this e�ect.

6 RELATED WORK

Automated program repair (APR) aims tomake debugging easier by automatically correcting bugs. A
group of APR techniques focus on handling complex bugs by generating patches addressing di�erent
program locations via evolutionary search [39, 83–85], symbolic and variational executions [46, 70],
evolutionary siblings identi�cation and update [57], deep learning [41], iterative repair [80], and
patch combination [36]. The majority of existing APR techniques are single-hunk-oriented. They
produce patches repairing a single program location based on patterns for good patch construction
(e.g., [42]) and bad patch identi�cation [63], syntactic and semantic similarities (e.g., [1, 31, 69, 74,
78]), code synthesis (e.g., [23, 46, 76, 77]), program state analysis [13], bytecode mutation [24], and
machine learning [88]. Recently, various LLM-based techniques have been proposed [22, 32, 71, 73].
They have demonstrated superior abilities in repairing a buggy line, hunk, or even a method [71].

The Defects4J benchmark [34] is widely used for evaluating APR techniques but contains a
signi�cant fraction of divisible multi-hunk bugs triggering multiple failures. To provide a better
basis for multi-hunk repair research, we developed IBugFinder and applied it to the benchmark to
detect existing divisible bugs and further isolate them to create new indivisible bugs. IBugFinder is
related to but is di�erent from the various methods proposed to facilitate parallel debugging [61, 86],
improve fault localization [87] and prediction [14, 67], and identify single-fault �xes [51] in that
it is designed to be applied to an existing benchmark for detecting multi-fault bugs and further
isolating them into single-fault bugs. In our context, where the buggy program, the developer patch,
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and the test cases are known, IBugFinder can determine, instead of inferring, the number of bugs to
be isolated. IBugFinder performs test case minimization to create new tests with single assertions.
It is di�erent from existing test suite minimization methods [82] in that it is not aimed at reducing
the number of test cases.
Our study of multi-hunk �xes is related to many existing studies of bugs and patches [3, 9, 12,

30, 60]. The key di�erence is that we focused on analyzing the behavioral relationships for patches
of the indivisible, single-fault multi-hunk bugs rather than for example understanding the general
syntactic properties of patches [60], creating a multi-fault benchmark [3], and investigating the
timeline of changes for failure exposure [12].
The study conducted by Yi et al. [81] is related to ours in that it involves evaluating the e�ec-

tiveness of APR in generating partial patches serving as repair hints. The key di�erence between
their study and ours is that their study was not designed for indivisible bugs. Their de�nition of
partial patches is based on test case execution result, and this type of partial patches do not exist
for indivisible bug repair.

7 CONCLUSION AND FUTURE WORK

Previous evaluation of multi-hunk repair techniques is highly misleading, as the widely used
Defects4J benchmark contains a signi�cant number of divisible bugs. A divisible bug triggers
di�erent failures. It is not something a developer typically deals with for realistic debugging.
To provide a better basis for the research of multi-hunk bug repair, we developed an approach
IBugFinder for automatically detecting and creating indivisible multi-hunk bugs. We have applied
the approach to 281 Defects4J multi-hunk bugs and created a new dataset containing indivisible
bugs only. We evaluated existing techniques with the indivisible multi-hunk bugs. Our result shows
that current APR techniques repaired only a few of the bugs and calls for more advanced approaches.
Finally, we studied a variety of the patches of the indivisible bugs to understand how to repair these
bugs e�ectively and analyze how existing techniques perform. As the main result, we identi�ed
8 behavioral relationships characterizing the internal roles of the partial patches used for failure
resolving and suggested di�erent strategies for indivisible bug repair. We also showed that existing
APR techniques do not go far beyond generating single-hunk-alike patches.

In future work, in addition to improving IBugFinder to detect divisible bugs with better e�ciency
and produce minimized tests with less testing overhead and applying IBugFinder to more bugs
from Defects4J and other datasets for indivisible bug detection, we will also investigate using an
AST-based di� utility and de�ning small-scale partial patches for bug isolation. Moreover, we will
explore leveraging LLM to produce e�ective multi-hunk patches by incorporating the behavioral
relationships we identi�ed.

8 DATA-AVAILABILITY STATEMENT

Data and code for reproducing our results are available on Zenodo [75]. Updated information about
the project can be found at https://github.com/qixin5/indivisible_multihunk_bug_repair.
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