Program Repair Using Code Repositories

Qi Xin
Brown University
gx5 @cs.brown.edu

Abstract—We present our system RepoRep for repairing faulty
programs at the source code level using large code repositories. It
has four key steps: fault localization, code search, renaming, and
patch generation. Fault localization identifies a program’s faulty
locations; code search uses keywords describing the faulty code
to find candidate code for repair in the repositories; renaming
unifies the candidates with the faulty code; and patch generation
uses the unified candidates to generate potential fixes. We have
implemented RepoRep for automatically fixing Java programs,
using GitHub as the code repository where the only manual
input is the keywords. We demonstrate the effectiveness of our
approach by running RepoRep to repair 27 buggy programs
derived from Fry and Weimer [1] and by comparing it to
GenProg and Nopol using the same programs. RepoRep can
successfully repair 19 of these with correct patches while GenProg
and Nopol can each make correct repairs for less than 5.

I. INTRODUCTION

Fixing bugs is laborious. Automatic fault localization tech-
niques [2], [3], [4], [5], [6] are capable of localizing the
suspicious parts of a program using the program’s executions
against test cases. However, given the faulty code portions, it
is still the programmer’s job to fix the bugs.

Program repair tools try to do this automatically, generally
at the source level. For instance, GenProg [7], [8] takes a
faulty program and a set of test cases as inputs, creates an
initial set of program variants, and uses genetic programming
to evolve a set of variants in search of a good patch. GenProg
generates variants using the same program’s source. In doing
so, it implicitly assumes that the correct behavior is somewhere
within the same program.

While the correct behavior may appear elsewhere in the
same program, as noted by [9], [10], it may also appear in
other programs. Our approach aims to find any of those pro-
grams for bug-fixing. We assume the fix to the bug is relatively
small compared to the program and the code representing
the correct implementation of the program could be obtained
via searching for code that is similar (but not identical) to
the buggy code. While code similarity could in general be
defined in multiple forms, in this paper, we focus on code
syntactic similarity (see Section III-B). The study [11] showed
that there is significant syntactic redundancy within a medium-
sized (6,000 projects, 420 million LOC) code repository. This
should be more significant for today’s code repositories which
are huge and are rapidly growing. As of 2016, Open Hub [12]
claims to contain 31 billion LOC and GitHub claims to have
35 million repositories [13]. Therefore, for a reasonable code
chunk size, we believe it is possible to find syntax-similar

Steven P. Reiss
Brown University
spr@cs.brown.edu

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

chunks in the repository that are solving a similar problem and
hence could represent a correct implementation of the buggy
code.
Our research makes use of this assumption. Our system
RepoRep starts with a buggy but runnable Java program and
a set of test cases. It employs automatic fault localization to
identify a code chunk containing the buggy code based on the
test cases. The user supplies keywords describing that code
chunk. RepoRep then uses code search to get candidate code
from GitHub, matches the candidates to the buggy code chunk
and finally generates patches based on the candidates.
To allow useful candidates to be effectively retrieved, we
believe the size of the code chunk is critical. A chunk that is
too small is often lack of enough context. However, a chunk
that is too large is likely to be unique and could lead to many
false positives being found that match to the irrelevant parts
of code. In this paper, we assume the code chunk is a method.
We leave the study of a better form of code chunk for future
work.
The goal of code search is to use repository code to repair
the buggy methods. Current techniques are limited by the
existing code in the program and their reliance on test cases.
Although systems like GenProg, RSRepair [14] and AE [15]
are able to propose a number of patches, according to [16],
the majority of those patches are not correct: GenProg can
only fix 2 of the 105 considered bugs with correct patches.
RSRepair [14] and AE [15] have also poor patching per-
formances. The main problem is that the generated patches
are artificial and overfitted [17]. By considering code outside
the project that does a similar task and by assuming this
code does the task correctly, we hope to extend the fixing
capabilities and performance of automatic bug repair. There
are other techniques [18], [19] similar to ours that make use
of code in the repository that is semantically similar, or more
strictly, semantically correct for bug-fixing. Compared to these
techniques, RepoRep’s syntactic code search is more efficient.
It is able to utilize any code (of the same language) in the
repository without having to compile or execute the code.
This paper describes RepoRep showing the feasibility and
promise of our approach. Our contributions are:
1) We present a novel system RepoRep for program repair
using today’s large external code repositories.

2) We show how to identify code in a repository that can
be a candidate for repair.

3) We create heuristics and algorithms for unifying the
names of the candidate and target code and for generating

Patch

OUTPUT

Fig. 1. Approach Overview. TS: Test Suite. FP: Faulty Program. KW:
Keywords. Repo: Code Repository. T: Target. C: Candidate. NT: Normalized
Target. NC: Normalized Candidate. RC: Renamed Candidate. Step 1: Fault
Localization. Step 2: Code Search. Step 3: Normalization. Step 4: Renaming.
Step 5: Patch Generation.

patches to the buggy code using the candidates.
4) We demonstrate through experiments that our techniques
can work and can work well.

Section II provides an overview of RepoRep’s repairing
process. Section III describes the design and implementation
of RepoRep in detail. Section IV describes the experiment
used to validate our approach and provides an analysis of the
results. Section V describes related work.

II. OVERVIEW

An overview of RepoRep is presented in Figure 1. For bug-
fixing, RepoRep requires as input a faulty program and a set
of test cases, some of which the program fails. It also requires
user-provided keywords to access GitHub for code search.
What RepoRep outputs is a patch (if any exists) that can pass
the test cases. In doing so, the design of RepoRep needs to
address several problems.

First RepoRep uses fault localization techniques to find the
buggy method as the fixing target (Step 1). Of the numerous
automated techniques [2], [3], [4], [5], [6] available, it uses
Tarantula [5] for this purpose. The user then supplies keywords
describing that code. RepoRep uses these keywords to search
GitHub (Section I1I-B), yielding files representing Java classes.
For each file, it extracts all the methods and uses them as
potential candidates (Step 2). To be useful, RepoRep needs to
identify candidates that are likely to fix the bug. We assume
the fix is relatively small and a useful candidate has similar
context to the buggy target code. The first problem is ranking
these potential candidates according to their similarity (defined
in Section III-B) to the target.

When using a candidate to fix the target, RepoRep needs to
do some unifications between them. It first needs to eliminate
purely syntactic differences (Step 3), and the second problem
is normalizing the code to account for this. Next RepoRep
needs to map the names in the candidate to match those in the
target (Step 4). There can be a large number of such mappings,
and the third problem to be addressed is finding the most
appropriate ones.

Once a name-matched candidate is found, RepoRep uses
the differences between it and the target to generate patches

| private static int indexOfSmallest (
2 int startIndex, Comparable[] a,

3 int numberUsed) {
4 Comparable min
5 int indexOfMin
6 int index;

7 for (index = startIndex + 1;
8

9

a[startIndex];
startIndex;

index <= numberUsed; index++)
//{ Block inserted by normalization
10 if (a[index].compareTo (min) < 0) {
1 min = a[index];
12 indexOfMin = index;
13 }
14 //}

15 return indexOfMin;

Fig. 2. An Example of Target Code.

and uses the test suite to validate the patches (Step 5). If
the differences are minimal, this is easy. Otherwise, many
potential patches could result. The fourth problem is how to
generate reasonable patches based on the differences.

To determine how to best address these problems, we
selected a set of 20 examples to train RepoRep. These were
manually collected from the IntroClass bugs [20] (selected
programs were rewritten in Java), StackOverflow [21], and
Defects4j [22] and varied in complexity, scope, and domain.
They were independent of any examples we later used for
evaluation. We used these examples to determine appropriate
algorithms and heuristics for each of the above problems.
Where the algorithms involved weights and probabilities, we
used the examples to determine appropriate values (Sec-
tion III-C2).

Figure 2 shows the paper’s running example.
indexOfSmallest is an auxiliary method for selection
sort. It returns the index of the smallest value of a from
index startIndex to numberUsed. The bug is in the
conditional: index <= numberUsed should be index
< numberUsed.

III. METHODOLOGY

We now elaborate on these stages of RepoRep.

A. Fault Localization

The first stage identifies the suspicious method of the pro-
gram as the target to fix. RepoRep first runs the program with
Jacoco [23] against the test cases to get code coverage and uses
Tarantula [5] to compute the suspiciousness of each method.
The result is a list of methods sorted by their suspiciousness.
RepoRep selects all methods above a certain threshold (half of
the maximum) as the targets, assuming one of them contains
the bug. It then executes the subsequent steps independently
on each selected method.

B. Generating Candidates

The next stage finds candidates for patching. The ideal
candidate code is essentially the same as the original code
except for the necessary bug fix. Assuming that the fix is small

relative to the size of the original code, this means finding code
similar (but not identical) to the target.

Given the identified faulty method M and a set of user-
provided keywords K, we define that a candidate method M’
is similar to M if (a) the pure program text of M’ contains
some keyword £k € K and (b) the parameterized program
text of M’ is similar to M according to the Levenshtein
Similarity. (Program parameterization is explained at the end
of this section.) Condition (a) makes sure the candidate method
is conceptually similar to the target in terms of the keywords.
Condition (b) makes sure the candidate method is syntactically
similar to the target in terms of the program structures.

Repositories like GitHub offer a keyword search front end
returning files containing those keywords in a priority order.
RepoRep asks a user to choose keywords describing the target
domain (which is the only manual step in RepoRep’s overall
process) and accesses GitHub through the keywords to obtain
an ordered set of candidate methods that satisfy condition (a).
RepoRep is inevitably sensitive to the selection of keywords
as discussed in Section IV-B3.

Given the keywords, RepoRep accesses the top N pages
of search results from GitHub. (We choose N = 20 for
experiments.) It creates a potential candidate solution for each
method in each returned file. This candidate includes the
method as well as the surrounding class since field and helper
methods might be required.

To further select syntactically similar candidates, RepoRep
compares the parameterized program texts between the target
and each of candidates. In order to create the parameterized
program texts, RepoRep first normalizes the target and each
of the candidates to eliminate syntactic differences. This is
done using semantic-preseving tranformations. While many
potential normalization rules exist, RepoRep currently only
uses the simple transformation that replaces a single statement
with a block containing just that statement. Our initial experi-
ments found that this was often sufficient. If needed, RepoRep
can be configured with more complex transformations. After
normalizing the code in Figure 2, the if statement has been
inserted into a block, which now becomes the loop’s body.

RepoRep next identifies the most likely candidates from
the set of potential ones by prioritizing them based on their
code similarity to the target. Since this is akin to finding code
clones [24], [25], [26], [27], [28] of the target, RepoRep takes
a similar approach using the ideas in CCFinder [24]. Given
a normalized target and candidate, RepoRep parameterizes
their program texts and represents their token sequences as
strings called the code patterns. These strings capture the
underlying program structures while omitting low-level details
such as names and literals. Clone similarity then reduces to
the evaluation of string similarity, for which RepoRep uses
Levenshtein Similarity. The candidates are ranked using this
metric.

RepoRep uses a slightly modified version of CCFinder’s
patterns that our initial experiments showed yielded more
accurate results. Instead of using a consistent symbol p
for all the name tokens, RepoRep replaces the tokens of type

1 public static void sortAnything(

2 Sortable items[], int numOfItems) {

3 Sortable temp;

4 int indexSmallest; int indexl; int index2;
5 for (indexl = 0;

6 indexl < numOfItems - 1; indexl++) {
7 indexSmallest = indexl;

8 for (index2 = indexl + 1;

9 index2 < numOfItems; index2++) ({

10 if (items[index2].lessThan(

1 items[indexSmallest])) {

12 indexSmallest = index2;

13 }

14 }

15 temp = items[indexl];

16 items[indexl] = items[indexSmallest];
17 items[indexSmallest] = temp;

Fig. 3. An Example of Candidate Code (Normalized)

names with the symbol t, method names with m, and
variable names and literals with the p. All other types
of tokens are kept intact. Thus, for example, the generated
code pattern of “Comparable min=a[startIndex];”
from Figure 2 becomes “St$$p$=$p$[Sp$];~. RepoRep
considers the 100 top-ranked candidates for the subsequent
steps. This value was chosen based on our initial experiments
to balance candidate variety and repairing efficiency. Figure 3
shows a candidate example chosen this way by RepoRep using
the keyword “smallest index”.

C. Renaming

Next RepoRep renames the top candidates so that they
use the same names as the target. This treats each candidate
independently (and, in the implementation, in parallel). For
each candidate, it generates matchings that map names in
the target to those in that candidate. Using a branch-and-
bound algorithm it generates the top three matchings for each
candidate. Our renaming experiments (Section III-C2) with the
training data show that a candidate that has the potential to fix
a target is often close to it and there are only a few mappings
that make sense; hence it was enough for RepoRep to only
consider the top three mappings.

1) Create the Name Mappings: We define a Name Mapping
as a mapping that takes each identifier in the candidate and
maps it either to an identifier in the target or to itself such
that:

« Consistency. Variable identifiers are mapped to variable
identifiers, types to types, methods to methods.

« a-Conversion. Identifiers with the same binding in the
candidate are mapped to the same identifier.

« Compatibility. Candidate identifiers are only mapped if
their underlying data types are compatible.

We define Variable Mapping, Type Mapping and Method Map-
ping as different types of name mappings that map the variable
identifiers, data types and method identifiers respectively in
the candidate subject to the above constraints. We define a

Renaming Element (RE) as an instance of a bound identifier.
For example, in Figure 2, the variable index is an RE.
With the definition of RE, the mappings can be thought of as
mapping REs in the candidate either to themselves or to REs
in the target via a-conversion. We do not consider mappings
that are either inconsistent or incompatible.

Variables are the most prevalent identifiers in most code.
For this reason, RepoRep first finds the best variable mappings
and then extend each of these to name mappings using the best
type and method mappings.

RepoRep determines the best variable mappings by gener-
ating a score for each possible mapping and then choosing
the mappings with the highest score. The score is meant to
reflect the quality and appropriateness of the mapping. It is
computed by summing the scores for each mapping from a
candidate variable RE (cVRE) to a target variable RE (tVRE)
or to itself. RepoRep uses a branch-and-bound algorithm to
make this practical.

The heuristic score for a mapping from cVRE to tVRE is
based on three things: the declared types, the names, and, most
important, the def-use instances which reflect the similarity
of the contexts in which the names are used. RepoRep first
looks at their declared types to determine whether the REs are
compatible. The REs are incompatible iff the declared types
are incompatible library types (e.g., String v.s. List) or
incompatible primitive types ! (e.g., int v.s. boolean). If
types are incompatible, the mapping score is just zero (i.e.,
c¢VRE and tVRE are not matched), irrespective of how the
names or the def-use instances are scored. (Note that two REs
are compatible if any of their declared types is non-library.
This is because the types can potentially be renamed to be the
same.) For compatible types, two variables of the primitive
and library types are more likely to match. RepoRep uses the
score sdecltype (Section III-C2) for compatible primitive types
and compatible library types. (For array types, RepoRep uses
the compatibility of their base types.)

Two variables with the same name are likely to match,
especially if that name is long, since they are likely used for
similar purposes. RepoRep uses a name score slname if the
names are longer than one character and equal, and a score
of ssname if the names are the same one character name. It
takes this conservative approach since names that are similar
do not necessarily have similar meanings.

Analyzing and comparing the def-use instances, which
represent the contexts of names, is more complex. We define
a def-use instance of a variable RE to be an instance of
how the RE is defined or used in a context. For example,
there are seven def-use instances of the variable RE index
in Figure 2, one of which is in line 11. A def-use instance
encodes the contexts by the context locations (ctxt_locs) and
the context expressions (ctxt_exps). A context corresponds
to an predecessor of the RE instance in the AST where
the immediate context is the instance’s parent. ctxt_locs

'We define byte, short, int, float, double and long types are compatible to
each other. char and boolean are only compatible to themselves.

TABLE I
CONTEXT LOCATIONS
Normal Special
class-field method-parameter

class-method
method-body
catch-clause-body
if-then-branch
if-else-branch
labeled-body
switch-body
synchronized-body
try-body
finally-body

catch-clause-parameter
enhanced-for-statement-parameter
enhanced-for-statement-expression
loop-condition

loop-body

for-initializer

for-updater

labeled-label

switch-expression
synchronized-expression

is a list of RepoRep-defined types of locations in which
an RE appears. For example, ctxt_locs for index in line
11, Figure 2 is {if-then-body, for-body, method-body}.
ctxt_exps is a list of parametered expressions in which
an RE appears. For example, ctxt_exps for the same
instance of index is a list of parametered expressions of
{a [index],min=a[index],if (a[index] .compareTo
(...){...}, for(index=startIndex+1l;...){...}}
RepoRep associates each def-use instance of cVRE with
a def-use instance of tVRE. It scores all possible such
associations and uses the best score as the overall def-use
instance matching score. The score for a particular def-use
instance is the sum of its location and expression scores. The
def-use instance and the matching for type RE and method
RE are likewise defined.

Now we explain the RepoRep-defined location types and
the parametered expressions in detail. To understand the types
of locations in which names appear, we identify using our
training data twenty-two different context locations shown in
table I to be used by RepoRep. We categorize these as either
normal or special, where special indicates that the context
is probably more important (and thus weighted more) in
identifying whether two identifiers represent the same name.
Each use of an RE has an associated list of context locations
where the first item is its immediate location, the second is a
context location that it is nested in, etc. Two uses are scored
by looking at their context location lists, and adding scores
for each location in those lists until the lists differ. Matching
special locations are scored as ssloc and matching normal
locations as snloc.

Let us take an illustrative example of matching two def-use
instances of REs: index (line 12 of Figure 2) and index?2
(line 12 of Figure 3). The context locations for index are
if-then-branch, loop-body and method-body. The context lo-
cations for index2 are if-then-branch, loop-body, loop-body
and method-body. RepoRep considers if-then-branch (normal)
and loop-body (special) as their common context locations.
The location score is snctxtloc + ssctxtloc.

To capture the use of an identifier in an expression, RepoRep
creates the parameterized expressions using the code pattern
strings defined in Section III-B (slightly modified by using
v for the RE instance that is targeted) for the immediate ex-

pression the variable is nested in, the expression the immediate
expression is nested in, etc. This yields a list of parameterized
expressions as ctxt_exps. RepoRep scores two instances by
finding their longest common parameterized expressions be-
fore ctxt_exps differs, counting the number of symbols in that
expression and multiplying by sctxtexp. In the above example,
since the longest parameterized expressions between index
and index?2 is p=v; (the RE under study is v) from
indexOfMin=index; and indexSmallest=index2;,
the expression score is 4 X sctxtexp.

RepoRep chooses the top three variable mappings based
on their scores. For each of these, it next finds the most
appropriate mapping of type identifiers. This is again done
heuristically, based on the type names, the def-use instances
where the type names appear, and, most importantly, the
matching variables declared of each type. The latter takes into
account that variables that are mapped to each other should
have consistent types. Name matching is done the same way
for types as for variables. Similarly, the def-use instances
where the type names appear are also computed in the same
way, except RepoRep discounts the score by multiplying by
stetxt factor since such contexts are not as important based
on our experimental observations. The declaration matching
score for two type REs is simply the number of variables
declared of the two different types that are mapped to each
other. Again the final score is the sum of the three matching
scores. To extend the name mapping, for each of the three
variable mappings, RepoRep finds the best type mapping (i.e.,
the mapping with the highest score) and augments each of the
variable mappings accordingly.

Finally, if there are any method names that need to be
mapped, RepoRep finds the best mapping of these names and
augments the combined variable and type mapping accord-
ingly. The score for matching two method REs is the sum
of scores based on their names and their def-use instances.
The name and def-use instance scores are computed as for
variables.

The result is 3 complete name matchings for each of the
100 initial candidates. This produces a total of 300 mapped
candidates that RepoRep can then use for patch generation.

2) Find the Best Parameter Values: RepoRep uses seven
score parameters for creating the name mappings in Sec-
tion III-C1. They are sdecltype, slname, ssname, ssloc, snloc,
sctxtsymbol, stctxtweight. To obtain a proper set of values, we
trained RepoRep’s renaming process over the held-out dataset
consisting of 20 buggy programs (Section II). For each buggy
program’s target method, we manually found a candidate
method that can fix the bug. This results in 20 target-candidate
pairs. We also manually created an appropriate name mapping
for the critical REs as the oracle for each bug-candidate pair.
With each set of parameter values that we tried, RepoRep
ran the renaming process for each target-candidate pair and
checked the best result name mapping against the oracle to
decide whether the result name mapping was valid.

We systematically tried all possible value-combinations for
the seven parameters under the following constraints to make

1 public static void sortAnything(
2 Comparable a[], int numberUsed) {

3 Comparable min;

4 int indexOfMin; int startIndex; int index;

5 for (startIndex = O0;

6 startIndex < numberUsed - 1; startIndex++) {
7 indexOfMin = startIndex;

8 for (index = startIndex + 1;

9 index < numberUsed; index++) {

10 if (a[index].compareTo (
11 a[indexOfMin])) {

12 indexOfMin = index;

13 }

14 }

15 min = a[startIndex];

16 a[startIndex] a[indexOfMin];

17 a[indexOfMin] = min;

Fig. 4. Renamed Candidate Example

the experiments affordable. (1) The range is (0,1] for all
parameters except sctxtsymbol whose range is (0,0.5]. We
choose a smaller range for sctxtsymbol because it is multiplied
by the number of expression symbols (which is often no
less than 4) to compute the matching score of ctxt_exps. (2)
For each parameter, we chose five values in its range. In
specific, we chose {0.2,0.4,0.6,0.8,1.0} for any parameter
whose range is (0,1] and we chose {0.1,0.2,0.3,0.4,0.5}
for sctxtsymbol. (3) Since two REs with long identical names
are often much more likely to match than those with short,
single-character names, we define ssname to be always greater
than slname. (4) Since special context locations should be
weighted more than normal context locations, we define ssloc
to be greater than snloc. Under these contraints, we have in
total 12,500 sets of values. RepoRep was fed with each set
of values for the renaming trials. It took about 19 hours to
finish. The results show there are 28 out of the 12,500 value-
settings that lead to a maximum of 18 valid renamings for the
20 target-candidate pairs. We picked one such value-setting
(sdecltype = 0.2, slname = 1, sname = 0.2, ssloc = 0.6,
snloc = 0.2, sctxtsymbol = 0.5 and stctxtweight = 0.6) that
we believe can generalize well to be used by RepoRep.

Using this value-setting, a candidate as renamed by Re-
poRep for our running example is shown in Figure 4,
where method lessThan is renamed as compareTo,
type Sortable is renamed as Comparable and vari-
ables index1l, numOfItems, indexSmallest, index2,
items, temp are renamed as start Index, numberUsed,
indexOfMin, index, a, min respectively.

D. Patch Generation

RepoRep next generates patches for each of the renamed
candidates and then evaluates those patches using test cases.
Patches are generated based on the differences between the re-
named candidate and the target. RepoRep employs ChangeDis-
tiller [29] to match target and candidate at the statement
level and identifies any statement differences based on the

matching result. For each such difference, RepoRep makes
the corresponding change to the target and yields a patch. The
generated patches are then validated using the test cases, and
the final patch is chosen based on the results. To actually mod-
ify the target’s statements, RepoRep uses deletion, replacement
and insertion which are also the mutating operations used by
GenProg. However, RepoRep’s patch generation is essentially
different from GenProg’s patch generation in three aspects:
the modification of the target is performed using the candi-
date; the modification is deterministic, not probabilistic; and
there is no test-case-guided search algorithm such as genetic
programming. Without using such algorithm, RepoRep tends
to generate less overfitted patches as shown in Section I'V-B.

1) Statement Matching: RepoRep employs ChangeDis-
tiller [29] to match the statements of target and candidate
using their abstract syntax trees, or ASTs. ChangeDistiller first
matches the leaf nodes, and then matches the inner nodes
in a bottom-up way. We define the leaf nodes here to be
any statement nodes that have no children statements such
as the return statement. The inner nodes are any statement
nodes that have nested statements such as the if statement.
Two statements can only match if they are compatible. We
define two statements are compatible iff their statement types
are the same or they are both loop-statements (e.g., for v.s.
while statements). ChangeDistiller matches the leaves based
on the bigram string similarity. It matches the inner nodes
based on the bigram string similarity of their conditions,
if any, (e.g., the if-condition) as well as the matchings of
their children statements where ChangeDistiller uses the Dice
Coefficient measure. RepoRep completely follows ChangeDis-
tiller’s matching algorithm, its similarity measures and its
threshold values to achieve the statement matchings. The
matched statements between Figures 2 and 4 can be found
in Table II.

2) Modification: RepoRep generates multiple patches
based on the statement matching result, validates them against
the test cases, and returns any successful one that can pass all
the test cases. It performs deletions, replacements and inser-
tions to modify the target based on the matched statements.
The modification process is deterministic.

To generate patches, RepoRep performs the three modifi-
cations in turn. We used our initial experiments to determine
this ordering. It first performs deletions for each of the target
statements that are not matched. Note that a target statement
s that is not matched may have nested statements that are
matched. In that case, RepoRep simply skips s for deletion.

RepoRep next performs the replacement modification. For
each statement in the target that has a match in the candidate,
RepoRep yields a patch by replacing the statement with its
match. In addition, RepoRep yields two more patches by
replacing the respective statement condition and the statement
body for the following statements: if, do, for and while state-
ments. To avoid yielding the same target method, RepoRep
performs no modification for any replacement that is identical
to its origin.

RepoRep performs the insertions by first looking for state-

ments in the candidate that are not matched. It then attempts
to insert each of those statements into some place in the target.
Similarly, if a candidate statement s is unmatched but any of its
nested statements is matched, RepoRep gives up the insertion
for s because the potential occurrence of s in the target could
lead to statement redundancy caused by its nested statements.
If s is good for insertion, RepoRep attempts to compute an
estimate of where s is likely to fit in the target by looking at
the statements in the candidate that have matches that come
before and after s to be inserted. Let those statements be s_
and sy respectively. RepoRep then uses the positions of s_
and s in the target, denoted as s and s, , to narrow down
the range of possible insertion positions. In specific, if s
and s', are from the same block, RepoRep inserts s at each
position in between to yield each patch. Otherwise, RepoRep
yields patches by inserting s at each position after s’ in its
block and at each position before s’, in its block. If neither
5_ nor sy exists, RepoRep simply gives up inserting s since
there is no matching evidence that s is needed.

The total patches are the union of patches yielded after each
modification. RepoRep validates each patch against the test
cases and reports the successful one passing all of them.

After applying the patch generation techniques to our
example target, RepoRep finds a successful patch which is
generated by replacing the target for-loop’s condition expres-
sion index<=numberUsed (line 8 of Figure 2) with the
corresponding condition expression index<numberUsed
(line 9 of Figure 4) of the candidate for-loop.

IV. EXPERIMENTS

To validate our approach, we tested RepoRep using 27
faulty Java programs derived from Fry and Weimer [1], and
compared the results to GenProg and Nopol.

A. Experimental Setup

In [1], a study of human’s fault localization accuracy, Fry
and Weimer collected 45 Java programs from 5 Java textbooks,
and manually injected faults into 35 of them. They assumed
eighteen different types of bugs and produced a frequency
distribution of those types based on their examination of
a hundred bug fixes from Mozilla. All inserted faults were
simple and traceable to a single line.

Among the 35 faulty programs, we chose 27 and omit-
ted 8: copyingdemo, die, heap_d, linkedqueue_le, stack_s,
divisiondemofirstversion, appletmenudemo and coin. The first
five were removed because they contain compiler errors;
divisiondemofirstversion is inappropriate for automatic testing
since it requires keyboard input; appletmenudemo requires a
graphical environment to be tested; and coin involves random
expressions which are difficult to test.

For each of the 27 faulty programs, we manually developed
both positive and negative test cases. For two of the programs,
lettercollection and disjointsetcluster, we added auxiliary get-
ter methods to access internal states for testing. However, we
did not alter any program’s target methods or execution.

TABLE II
MATCHED STATEMENTS

Target

Candidate

indexOfMin=index;

indexOfMin=index;

if (a[index].compareTo(min)<0){min=a[index];indexOfMin=index; }

if (a[index].compareTo(a[indexOfMin])){indexOfMin=index; }

int indexOfMin=startIndex;

int indexOfMin;

int index;

int index;

for (index=startIndex+1; index <=numberUsed; index++){..}

for (index=startIndex+1; index<numberUsed; index++){..}

We next selected keywords for each program. Because we
did not know in advance which method of a program was
buggy, we manually chose keywords for each of its possible
methods to allow corresponding candidates to be found. This
was done using words that came from the faulty program’s
text and represent the method and the program in some way.
For each set of keywords, we cached the searching results
to ensure consistency. To preserve the integrity of the repair
process, we manually excluded any repository candidates that
were from the original program.

For each program, we ran the repair on an Opteron 6282 SE
linux machine with 32 cores and 64G memory. For RepoRep
and Nopol, we ran the repair once. For GenProg, however,
we ran the repair ten times for each program to account
for randomness. If any plausible patch was generated that
passed all the test cases, the repairing process terminated. It
would also terminate with no plausible patch proposed upon
completion or when a time limit of 2 hours was reached.
After each program’s repair, any generated plausible patch was
manually examined for correctness. We determine a patch is
correct if it is semantically equivalent to the program’s non-
buggy version in [1].

B. Results

Table IV presents the results. For each program and each
tool, the table shows from left to right the average time (in
seconds), whether a plausible/correct patch was found (P/C).
In addition, the table shows the keywords used by RepoRep.
For GenProg, the table shows the number of plausible/cor-
rect patches generated (P#/C#) out of ten trials. A repair is
plausible if it passed all test cases. We manually determined
if each generated repair was semantically correct. A repair is
overfitted if it is plausible but not correct as defined in [16],
[17].

1) Repair Performance: RepoRep repaired 21 (77.8%) of
the 27 faulty programs, and generated correct patches for 19
(70.3%) of them. The patch overfitting rate for RepoRep is
only about 9.5% (2/21).

For six of the failing repairs, RepoRep was not able
to generate any plausible patches. The failures were due
to the dearth of effective candidates being retrieved (dis-
Jjointsetcluster, employee, hanoi_d and lettercollection) and the
restrictions in our modification algorithm (pair). Currently,
RepoRep is not able to handle mutiple fixes. So it fails to
repair quicksort whose target method contains two bugs. Two
repairs were overfitted: the lack of a good candidate and the

ease of creating an overfitted patch made it difficult to fix
linkedqueue_c. nodepool deals with intensive node allocations
and deallocations. The execution of its target method causes
the null-pointer exception. Any generated patch that can avoid
this error passes the test case but is unlikely to fix the bug.
Though successful, RepoRep took about half an hour to repair
selectionsort because the faulty chunk was not considered very
suspicious. RepoRep wasted its time trying to fix four non-
buggy chunks before actually fixing the real faulty one.

2) Comparing to GenProg & Nopol: We next ran experi-
ments comparing GenProg’s search-based patching approach
and Nopol’s [30] synthesis-based approach with RepoRep.

We obtained implementations of GenProg from [31] and
Nopol from [30] for Java, and used them to repair the same
27 programs. For each program, we ran GenProg in ten trials
(to account for the randomness) and we ran Nopol only in one
trial since Nopol is deterministic. The time limit is 2 hours for
each trial and for both tools. We used the default settings for
the other parameters for both tools.

As shown in table IV, GenProg proposed plausible patches
for only seven (25.9%) programs and generated correct patches
for four (14.8%) programs. GenProg successfully repaired two
programs (arrayins_la_07 and dictionaryelement) by state-
ment deletions and two programs (linkedqueue_d and selec-
tionsort) by inserting statements which can be found and
directly used from the same programs. RepoRep can also
repair those four programs with correct patches generated.
GenProg has difficulties repairing programs such as card and
disjointsetcluster whose fixes cannot be found as statements
within the same program. RepoRep addresses the problem by
finding, translating, and using code from the external code
repository.

RepoRep is also better in generating correct patches. For
the seven programs repaired, GenProg generated overfitted
patches for four programs with an overfitting rate 42.9%. The
overfitting rate for RepoRep was only 9.5% (C=Yes for 19
out of 21 repaired programs). This is because GenProg’s patch
search algorithm is test-case-guided whereas RepoRep relies
on program comparisons for patch generation.

Unlike RepoRep and GenProg, Nopol is constrained to
fixing only condition-related bugs. This results in faster speeds
but fewer plausible repairs. Nopol successfully repaired ar-
raystack_le by changing its buggy if-condition and heap_la
and huffiman both by adding if-conditions that effectively
deleted their buggy statements. The results show that Nopol

TABLE III
PROGRAM REPAIR USING DIFFERENT KEYWORDS

Programs Keywords Time P/C

card equals 485s Yes/Yes

card card equals this that 76s Yes/Yes

card equals rank 76s Yes/Yes

card equals this 68s Yes/Yes

smallest 1090s No/No

generalizedselectionsort_s generahzedselectlonsort 29s Yes/Yes
indexofsmallest

indexofsmallest min 46s Yes/Yes

index min 49s Yes/Yes

index min 25s Yes/Yes

arraystack pop 43s Yes/Yes

arraystack_d array stack pop size 478s No/No

suffers from generating overfitted conditions with an over-
fitting rate 50% because it relies on test case execution
for constraint formulating and patch synthesizing. RepoRep
successfully repaired all the programs that Nopol repaired.

3) Keyword Sensitivity: Since RepoRep requires human-
provided keywords as input, it is inevitably sensitive to their
selection. To study this we did experiments repairing each
program’s buggy method using different keywords chosen
either from the method’s text or to represent the method. In
RepoRep, candidates work better if they have REs that are
similar to the target and have a similar program structure as
the target. At the method level, this is more likely to occur
with candidates that perform a similar function to the original
method. While simple keywords often work, there are cases
where the proper choice of keywords is important. We show
the results of three cases in Table III that represent the range
of results.

card is a simple class encoding a playing card. The bug is
contained in a method “equals” which is used for comparing
the equality of two cards. As shown in Table III, although the
chosen keywords all lead to successful repairs, “card equals”
is not as effective as the other keywords in terms of the
repair time. It turns out the useful candidate retrieved by “card
equals” is ranked as low as 65 which affects the repairing
speed. This means “card equals” does not describe the target
well enough.

generalizedselectionsort_s implements the selection sort.
We used the buggy method as our illustrative example through-
out the paper. It turns out RepoRep cannot really use the
keyword “smallest” to fix the bug as shown in Table III.
This is because “smallest” is too general to well represent the
target method and leads to too many irrelevant methods being
retrieved. However, with more specified keywords, RepoRep
is able to locate useful candidates to fix the bug.

arraystack_d implements a stack using arrays. The program
contains a bug involving the incorrect use of the variable
“size” in the “pop” method. It turns out “arraystack pop”
is an apppropriate keyword. By breaking ‘“‘arraystack” into
two words and adding the word “size”, however, the keyword
becomes too constrained and does not lead to correct fixes.

4) Candidate Ranks: To determine if RepoRep was doing
extra work by considering 100 candidates and the top three
renamed versions (determined by the training data) for each,
we recorded the rank of each candidate and its corresponding
renamed version used to generate each plausible correct patch.
The rank of each candidate is based on its syntactic similarity
to the target as described in Section III-B and its renamed
version is based on the created name mappings as described
in Section III-C. It turns out most correct patches were created
by candidates with high ranks: RepoRep is able to obtain
100% repair performance using the top 15 retrieved candidates
and can still obtain more than 90% repair performance (in
specific, 20 out of 21 plausible patches and 18 out of 19 correct
patches) using only the top 5 candidates. Moreover, most
correct patches, in specific, 18 out of 21 plausible patches and
17 out of 19 correct patches, were created by the candidates’
first renamed versions.

C. Threats to Validity

We have demonstrated the effectiveness of RepoRep for
repairing simple bugs in textbook programs. However, the
study is limited by the size and complexity of the programs. it
is not clear that these results would scale to handle real bugs in
large systems: First, our approach is based on the assumption
that each program has a single bug within a single method
and the bug could be fixed relatively easily. However, the
assumption might be too strong for real programs which could
contain multiple bugs and a bug could span across multiple
methods. Second, methods might not be the suitable form of
code chunk for real bugs. This is because methods in large
systems are likely to be too unique. Using keywords for code
search could also be problematic since finding good keywords
for code in real systems can be hard. Third, our heuristics
for renaming, code matching and target modification have not
been verified on anything other than similar methods. Finally,
fault localization for complex systems will be less accurate.

V. RELATED WORK

Our efforts are built on top of significant previous work in
a variety of areas.

Searching for Matching Code

RepoRep starts with a keyword search to obtain an initial
set of candidates. GitHub [32] provides a keyword interface
for searching for code over its large code repositories. Other
keyword-based repository search tools include Open Hub [12]
and Krugle [33]. While GitHub appears to have the largest
repository, the other tools could also work.

Other search tools provide alternatives. Sourcerer [34] al-
lows users to specify both keywords and structural informa-
tion. CodeGenie [35] accepts test cases for search. s6 [36]
enables users to specify contracts and security constraints in
addition to keywords and test cases. Hill et al.’s work [37]
explores the linguistic and semantic roles of a query word in
the source code. Exemplar [38] takes into account both the
program textual description and API calls.

TABLE IV
THE REPAIR RESULTS

RepoRep GenProg Nopol

Faulty Program Time P/C Keywords Time P/C P#/C# Time P/C

arrayins_la_03 125s Yes/Yes | swap array 4883s No/No 0/0 10s No/No
arrayins_la_07 256s Yes/Yes | partition left right 16s Yes/Yes 10/6 14s Yes/No
arrayiterator 63s Yes/Yes | arrayiterator hasnext current 94s No/No 0/0 6s No/No
arraystack_d 85s Yes/Yes | arraystack pop 167s No/No 0/0 8s No/No
arraystack_le 166s Yes/Yes | arraystack pop top 210s No/No 0/0 6s Yes/Yes
card 79s Yes/Yes | card equals this that 4045s No/No 0/0 Ts No/No
dictionaryelement 80s Yes/Yes | compareto getclass 6s Yes/Yes 10/10 6s Yes/No
differentequals 135s Yes/Yes | equalarrays 7099s No/No 0/0 9s No/No
disjointsetcluster 919s No/No | parent findroot 3837s | Yes/No 1/0 9s No/No
employee 1024s No/No employee compareto 91s No/No 0/0 6s No/No
generalizedselectionsort_s 93s Yes/Yes | index min 950s No/No 0/0 8s No/No
hanoi_d 1130s No/No hanoi source 3382s No/No 0/0 10s No/No
heap_la 131s Yes/Yes | heap change 7282s No/No 0/0 6s Yes/Yes
huffman 247s Yes/Yes | huffman decode node getleft 128s No/No 0/0 Ts Yes/Yes
lettercollection 324s No/No add letter 1412s No/No 0/0 7s No/No
linkedqueue_c 499s Yes/No | linkedqueue dequeue 18s Yes/No 10/0 s Yes/No
linkedqueue_d 400s Yes/Yes | linkedqueue add front back 989s Yes/Yes /7 6s No/No
maxheap_c 961s Yes/Yes | heap add index 403s No/No 0/0 13s No/No
memory 82s Yes/Yes | swap temp get set 2385s No/No 0/0 Ts No/No
mergesort_s 291s Yes/Yes | mergesort array begin end 2234s No/No 0/0 19s No/No
nodepool T7s Yes/No | allocate pool free 10s Yes/No 10/0 25s No/No
pair 481s No/No | pair tostring 54s No/No 0/0 Ss No/No
pet 119s Yes/Yes | pet name age weight 4s No/No 0/0 6s No/No
quicksort 2150s No/No quicksort splitpoint sort 3055s No/No 0/0 133s No/No
selectionsort 1914s | Yes/Yes | selectionsort end begin 1142s | Yes/Yes 1 69s No/No
towersofhanoi 219s Yes/Yes | hanoi tower 1525s | No/No 0/0 17s No/No
twotypepair 64s Yes/Yes | equals otherobject 57s No/No 0/0 Ss No/No

RepoRep prioritizes the initial candidates based on code
similarity. Since this can be thought of as finding code clones
of the target, existing works of code clone detection [24], [39],
[26], [27], [40] are closely related to ours. In particular, we
apply the ideas of CCFinder [24] in transforming programs
into parameterized tokens for similarity evaluation. Finding
code that is syntactically similar (Type-3 clone as defined in
[41]) is mostly sufficient for our textbook bugs. However, it
seems more realistic to find code that is semantically similar
(Type-4 clone) [39], [42] for real bugs. There are other
tools finding similar code for plagiarism detection such as
MOSS [43] which abstracts programs with k-gram fingerprints
and finds code based on the fingerprint overlapping.

Program Matching

Our patch generation starts by matching the target and
candidate programs syntactically at the statement level, and
patching based on their syntactic differences. It employs
ChangeDistiller [29] which uses a tree differencing algo-
rithm that matches programs in a bottom-up way to do
so. Yang [44] proposed a similar approach which identifies
syntactic differences between two programs by matching their
syntax trees. The matching algorithm, however, is based on
dynamic programming and is performed in a top-down way.
The approach is not suitable for our needs since it is too
dependent on top-level similarity whereas we are looking for
low-level similarity. Because RepoRep only performs program
matching after finding similar code, normalization, and then
renaming, its program matching is relatively simple compared

to many existing program differencing approaches [45], [46],
[47], [48], [49].

Bug Fixing

The core idea of RepoRep is to search for code in the
repository that has the potential for bug-fixing (we look for
candidate code that is syntactically similar to the target) and
then use that candidate code to modify the target and generate
patches. Recent repairing techniques by SearchRepair [18] and
Code Phage [19] share the same basic idea but achieve the goal
in different ways.

SearchRepair searches for code that is semantically similar
to the buggy code for its fixing. The semantic similarity is en-
coded as constraints and finding similar code is done through
constraint-solving. Code Phage (CP) directly finds code in the
repository having the correct semantics through executing the
code with the given inputs. The tools differ from RepoRep
essentially in the form of code search. SearchRepair and CP
leverage constraint-solving and code execution for semantic
code search whereas RepoRep uses paramterized code pattern
for syntactic code search. Although semantic code search is
in general more precise, code semantics is often hard and
expensive to obtain. Constraints used by SearchRepair have
limited expressive power and constraint-solving is in general
undecidable and expensive. CP’s code search by execution is
also expensive. Still, it could lose the opportunities of utilizing
any programs that cannot execute the inputs but are good for
bug fixing. In contrast, RepoRep’s syntactic code search is
fast and cheap. It has the better potential to deal with any

code repository that is in large-scale and contains a large
amount of arbitrary and incomplete code fragments. The tools
are also different in terms of candidate translation and target
modification: SearchRepair encodes as constraint all possible
variable mappings between target and candidate and further
checks the constraint’s satisfiability. For target modification, it
performs the simple candidate code replacement; CP identifies
the code from candidate to be inserted in the target and relies
on instrumented execution to realize code translation, patch
generation and patch validation. In particular, CP is subject
to fixing certain types of bugs that need a check which can
be found and further inserted into the program; RepoRep uses
heuristics to identify identifier’s name and context similarities
to create name mappings. It performs the target modification
at the statement level using the candidate. RepoRep is general
and not targeted towards any types of bugs.

Besides using code search, a variety of systems have been
developed in recent years looking at other ways to gener-
ate patches for a buggy program and validate the patches
using a set of test cases, at least one of which exposes
the bug. GenProg [7], [8], an early such system, employs
genetic operations, mutation and crossover, to create pro-
gram variants and uses genetic programming to search for
patches. AE [15] proposes an adaptive patch search algorithm
and leverages program equivalence analysis for reducing the
search space. RSRepair [14] applies random search instead
of genetic programming along with test case prioritization
techniques to generate patches. Their results show that random
search can have better performance. A recent study [16] puts
into doubts their actual repairing capabilities after finding
out “the overwhelming majority of the accepted patches are
not correct”. PAR [50] inherits the patch search process of
genetic programming but uses predefined fix templates to
create program variants. However, in [51], Monperrus points
out that the fix templates do not address any defect class,
and most bugs seem be fixed by only two of the templates.
The staged repair technique of SPR [52] applies any of the
developed transformation schemas to an identified fault to
form a parameterized fixing sketch first. It next performs value
search or condition synthesis (if the fix is about conditions)
to generate repairs. Prophet [53] uses a trained probabilistic
model to speed finding patches that are likely to be correct
from its candidate patch space. All of these approaches use
fault localization techniques to target more suspicious code.

RepoRep differs from these in that it does not rely on solely
creating new code or on using code from the original program
as the source for potential changes. Rather, it identifies a
buggy chunk and then finds relevant, probably correct code
from large code repositories as the source for the patches. The
search space of potential patches is thus greatly decreased and
RepoRep is more likely to generate correct patches. Since it
assumes the buggy code chunk is a method, RepoRep only
requires a fault localization technique that can identify the
executed methods that are most likely to contain a bug and
not a particular line or statement.

Some other techniques use specifications or contracts as

oracles and utilize techniques such as constraint-solving and
program synthesis to correct bad code. AutoFix-E [54] requires
program contracts to reason about the predicates indicating
failures. It then synthesizes possible fixes. Gopinath et al.’s
approach [55] relies on the provided behavioral specification
to yield a counter-example, and then uses SAT solving to
fill the parameterized parts of the faulty statements with
correct expressions. SemFix [56] uses test cases to build the
specification as constraint for any suspicious statement, and
then generates the fix conforming to the specification via
constraint-solving. RepoRep differs from these techniques in
that it does not require or build any form of specifications.
Other approaches look at specific fixing tasks, repair sug-
gestions, and providing feedback. Relifix [57] targets on fixing
regression faults. Similar to RepoRep, Relifix’s repair first
finds candidate and syntactically compare the candidate and
the target for bug fixing. The difference is, for Relifix, the
candidate comes from the previous version of the buggy pro-
gram where the program has changed. After fault localization,
the candidate can be easily identified. There is also no need
to tranform the candidate. RepoRep, however, makes it effort
in finding useful candidates that are totally external to the
buggy program. It uses heuristics to rename the candidates to
be used for target’s fixing. Compared to RepoRep, Relifix’s
modification is more specialized and thus more complex.
The modification is non-deterministic. Singh et al. [58] use
program synthesis to automatically provide feedbacks for
student’s incorrect code. Though the goal is similar to ours,
they focus on generating feedback rather than patches. For that
purpose, their approach requires the solution to the incorrect
code and the correction rules. MintHint [59] applies statistical
analysis in selecting expressions that are likely to be correct
for a faulty statement, and then synthesizes repair hints for it.
Demsky et al. [60] detects and then repairs inconsistent data
structures. Logozzo et al.’s work [61] suggests repairs based
on the violations and errors reported by a program verifier.
Works of [62], [63] focus on fixing concurrency bugs.

VI. CONCLUSION

In this paper, we have shown RepoRep, a new system for
automatic program repair. Different from current techniques
that use the same faulty program for repair, RepoRep leverages
code that potentially contains the corrected behaviors of the
bug from external, large code repositories. We have tested
RepoRep by successfully repairing textbook buggy programs
in a reasonable amount of time. For future work, we aim to
extend our system to real bug fixing. Code for RepoRep as
well as the examples we used for testing is available upon
request.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
grant CCF1130822.

[1

—

[2]

[6

=

[7]

[8]

[9]

(10]

(1]

[12]

[13
[14]

[15]

[16]

(17]

[18]

[19

[20]

[21]
[22]

REFERENCES

Z. P. Fry and W. Weimer, “A human study of fault localization accuracy,”
in Proceedings of the 2010 IEEE International Conference on Software
Maintenance, 2010, pp. 1-10.

H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault local-
ization using execution slices and dataflow tests,” in Sixth International
Symposium on Software Reliability Engineering, 1995, pp. 143-151.
M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor
queries,” in /8th IEEE International Conference on Automated Software
Engineering, 2003, pp. 30-39.

H. Cleve and A. Zeller, “Locating causes of program failures,” in Pro-
ceedings of the 27th international conference on Software engineering,
2005, pp. 342-351.

J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineer-
ing, 2005, pp. 273-282.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, 2005,
pp. 15-26.

C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, pp. 54-72, 2012.

C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: fixing 55 out of 105 bugs for $8
each,” in 34th International Conference on Software Engineering, 2012,
pp- 3-13.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: a general approach to inferring errors in systems code,”
in Proceedings of the eighteenth ACM symposium on Operating systems
principles, 2001, pp. 57-72.

E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The
plastic surgery hypothesis,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software, 2014, pp. 306—
317.

M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, 2010, pp. 147-156.
“https://www.openhub.net.”

“https://github.com/about/press.”

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of
random search on automated program repair,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 254-265.
W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: models and first results,” in IEEE/ACM 28th
International Conference on Automated Software Engineering, 2013, pp.
356-366.

Z. Qi, FE Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in 2015 International Symposium on Software Testing and
Analysis, 2015.

E. K. Smith, E. T. Barr, C. L. Goues, and Y. Brun, “Is the cure worse than
the disease? overfitting in automated program repair,” in Proceedings of
the 10th Joint Meeting of the European Software Engineering Confer-
ence and ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 2015, pp. 532-543.

Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun, “Repairing programs
with semantic code search,” in IEEE/ACM International Conference on
Automated Software Engineering, 2015.

S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic
error elimination by horizontal code transfer across multiple applica-
tions,” in ACM SIGPLAN conference on Programming Language Design
and Implementation, 2015.

C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass benchmarks
for automated repair of ¢ programs,” IEEE Transactions on Software
Engineering (TSE), vol. 41, no. 12, pp. 1236-1256, December 2015.
“http://stackoverflow.com.”

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in In
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), 2014, pp. 437-440.

(23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]
(33]
[34]

[35]

(36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

“http://www.eclemma.org/jacoco.”

T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654-670,
August 2002.

R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in 13th Working Conference on Reverse Engineer-
ing, 2006, pp. 253-262.

Z.Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176192, March 2006.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones,” in Proceedings of
the 29th international conference on Software Engineering, 2007, pp.
96-105.

C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in The 16th IEEE International Conference on Program Comprehension,
2008, pp. 172-181.

B. Fluri, M. Wursch, P. M., and G. H. C., “Change distilling: Tree
differencing for fine-grained source code change extraction,” [EEE
Transactions on Software Engineering, vol. 33, pp. 725-743, 2007.

F. Demarco, J. Xuan, D. L. Berre, and M. Monperrus, “Automatic
repair of buggy if conditions and missing preconditions with smt,” in
CSTVA’2014, 2014.

M. Martinez and M. Monperrus, “ASTOR: Evolutionary automatic
software repair for Java,” Inria, Tech. Rep., 2014. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01075976

“http://github.com.”

“http://www.krugle.com.”

S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code supporting
structure-based search,” in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications, 2006, pp. 681-682.

O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C. Masiero,
P. Baldi, and C. V. Lopes, “CodeGenie: using test-cases to search and
reuse source code,” in Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, 2007, pp.
525-526.

S. P. Reiss, “Semantics-based code search,” in IEEE 31st International
Conference on Software Engineering, 2009, pp. 243-253.

E. Hill, L. Pollock, and K. Vijay-Shanker, “Improving source code
search with natural language phrasal representations of method sig-
natures,” in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, 2011, pp. 524-527.
C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie,
“Exemplar: A source code search engine for finding highly relevant
applications,” IEEE Transactions on Software Engineering, vol. 38,
no. 5, pp. 1069-1087, 2011.

1. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings., International
Conference on Software Maintenance, 1998, pp. 368-377.

M.-W. Lee, J.-W. Roh, S. won Hwang, and S. Kim, “Instant code clone
search,” in Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, 2010, pp. 167-176.
C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470-495, May
2009.

M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in ACM/IEEE 30th International Conference on Software Engineering,
2008, pp. 321-330.

S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data, 2003,
pp. 76-85.

W. Yang, “Identifying syntactic differences between two programs,”
Software: Practice and Experience, vol. 21, pp. 739-755, 1991.

S. Horwitz, “Identifying the semantic and textual differences between
two versions of a program,” in Proceedings of the ACM SIGPLAN 1990
conference on Programming language design and implementation, 1990,
pp. 234-245.

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” in Proceedings of the 31st International Conference on
Software Engineering, 2009, pp. 309-319.

T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differencing algo-
rithm for object-oriented programs,” in Proceedings of the 19th IEEE
international conference on Automated software engineering, 2004, pp.
2-13.

Z. Xing and E. Stroulia, “UMLDiIff: An algorithm for object-oriented
design differencing,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, 2005, pp. 54-65.

H. A. Nguyen, T. T. Nguyen, H. V. Nguyen, and T. N. Nguyen,
“iDiff: Interaction-based program differencing tool,” in 26th IEEE/ACM
International Conference on Automated Software Engineering, 2011, pp.
572-575.

D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the Interna-
tional Conference on Software Engineering, 2013, pp. 802-811.

M. Monperrus, “A critical review of “automatic patch generation learned
from human-written patches”: essay on the problem statement and the
evaluation of automatic software repair,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 234-242.
F. Long and M. Rinard, “Staged program repair with condition synthe-
sis,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 2015, pp. 166-178.

——, “Automatic patch generation by learning correct code,” in Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM, 2016, pp. 298-312.

Y. Wei, Y. Pei, C. A. Furia, S. L. S, S. Buchholz, M. B., and A. Zeller,
“Automated fixing of programs with contracts,” in Proceedings of the
19th international symposium on Software testing and analysis, 2010,
pp. 61-72.

D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based
program repair using SAT,” in Proceedings of the 17th international
conference on Tools and algorithms for the construction and analysis of
systems: part of the joint European conferences on theory and practice
of software, 2011, pp. 173-188.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix:
Program repair via semantic analysis,” in Proceedings of International
Conference on Software Engineering, 2013, pp. 772-781.

S. H. Tan and A. Roychoudhury, “Relifix: Automated repair of software
regressions,” in Proceedings of the 37th International Conference on
Software Engineering, 2015, pp. 471-482.

R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in Proceedings
of the 34th ACM SIGPLAN conference on Programming language design
and implementation, 2013, pp. 15-26.

S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “MintHint: Auto-
mated synthesis of repair hints,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 266-276.

B. Demsky and M. Rinard, “Automatic detection and repair of errors
in data structures,” in Proceedings of 18th annual ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and
applications, 2003, pp. 78-95.

F. Logozzo and T. Ball, “Modular and verified automatic program
repair,” in Proceedings of the ACM international conference on Object
oriented programming systems languages and applications, 2012, pp.
133-146.

P. Liu and C. Zhang, “Axis: Automatically fixing atomicity violations
through solving control constraints,” in Proceedings of the 34th Inter-
national Conference on Software Engineering, 2012, pp. 299-309.

R. Surendran, R. Raman, S. Chaudhuri, J. Mellor-Crummey, and
V. Sarkar, “Test-driven repair of data races in structured parallel pro-
grams,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2012, pp. 15-25.

