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Abstract—Automated program repair is to reduce the manual
work for bug fixing by human developers. In recent 15 years, the
research community of program repair has created many novel
techniques. However, these techniques share several assumptions
that cannot always be satisfied in daily software development.
This badly hurts the application of program repair in practice.
For example, many repair techniques assume that test cases are
well written before patch generation; many techniques assume
that specific language features can be ignored (or already-
processed). In this paper, we propose a framework of C program
repair, which mainly addresses two challenges: test-independent
repair and preprocessor directive processing. Our solution to test-
independent repair is to automatically construct patch conditions
for C programs via parsing the syntax structures; our solution
to preprocessor directive processing is to generate code symbols
to replace preprocessor directives. We plan to implement these
potential solutions with program analysis techniques. The goal
of this paper is to present practical solutions for developers to
automate C program repair.

Index Terms—C program repair, test-independent repair, pre-
processor directives, industrial solutions, program analysis

I. INTRODUCTION

Human developers fix program bugs with programming

skills and experience; automated program repair aims at fixing

bugs via automatic techniques. The original goal of automated

program repair is to replace the repair efforts made by human

developers [1], [2]. In industry, it is not easy to make au-

tomated program repair practical. One of the major reasons

is that automated program repair lacks program specifications

that can be mapping to requirements for developers.

In recent 15 years, the research community of program

repair is evolving. Since the pioneering method GenProg by

Weimer et al. [3], test cases have severed as the practical

specifications in program repair. The benefit of applying test

cases in program repair is direct. First, a test case consists of

two major parts: a test input and a test oracle. The test oracle

This work is supported by the National Natural Science Foundation of
China under Grant Nos. 62141221 and 62202344.

is naturally designed to ensure the correctness of a test case.

Second, the emerging tendency of test-driven development

provides rich test cases for program repair. Applying test

cases in program repair is also called test-based program

repair [4]. However, the ideal scenario of test-based program

repair may fail in practice. For human developers, designing a

large number of test cases is time-consuming; for automated

program repair, the current number of test cases cannot provide

and guard the correctness of automated generated patches [5],

[6]. Many bugs are never covered by manually-written test

cases by developers [7].

The research community has created many novel approaches

to program repair. Most of these approaches are designed for

fixing general bugs and evaluated on a specific programming

language: detailed language features of the syntax and se-

mantics may be ignored in automatic approaches [8]. Recent

progress of deep learning and large language models even re-

laxes the requirements of processing programming languages:

source code in programming languages is transformed into text

in natural languages [9]. However, for accurate program repair

in industry, the ignored language features cannot be bypassed,

such as preprocessor directives in C programs or bytecode

structures in Java programs.

In this paper, we propose a framework of C program re-

pair, which mainly addresses two challenges: test-independent

repair and preprocessor directive processing. The goal of this

repair framework is to provide practical solutions to fix bugs in

C programs. The application scenario of the proposed frame-

work is the same as daily software development by developers:

the framework takes a buggy C program as input and returns

a patched program as output. This framework consists of

five iterative steps: code preprocessing, condition construction,

patch generation, patch update, and repair assessment. Fig. 1

shows the overview of our framework for C program repair.

Among these five steps, the three steps of patch generation,

patch update, and repair assessment share the same ideas
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Fig. 1. Overview of the proposed framework for C program repair.

of test-based program repair; the other two steps of code

preprocessing and condition construction are designed to meet

the requirements and challenges in C program repair.

In our framework, we focus on solutions to two challenges

in C program repair. One main challenge is how to generate

patches without pre-defined test cases, called test-independent
repair. Patch generation in test-independent repair is a chal-

lenging problem since there is no test case for assessing

correctness of patches. Our major solution to test-independent

repair is to automatically construct patch conditions for C

programs via parsing the syntax structures. We use program

analysis to implement the construction of patch conditions.

A patch condition is identified via static or dynamic pro-

gram analysis via parsing its related syntax in the program

language.1 For example, a pointer in C programs should

be initialized before the pointer is used. Such initialization

of a pointer can be viewed as a case of patch conditions.

In our proposed framework, the solution to test-independent

repair is designed in the steps of condition construction, patch

generation, and repair assessment.

The other main challenge is how to process preprocessor

directives in program repair. A preprocessor directive is a

language feature in C programs, which is defined outside the

C syntax. In a compiler of C programs, preprocessor direc-

tives are replaced with specific grammars before compilation.

For example, a preprocessor directive #ifdef LIB_H is to

check whether a symbol LIB_H is defined when the line that

contains this preprocessor directive is processed. Our major

solution to preprocessor directive processing is to generate

code symbols (also called tokens in compilers) to replace

preprocessor directives. We use program analysis to imple-

ment the generation code symbols. The dependency among

preprocessor directives are extracted via static analysis. In our

proposed framework, the solution to preprocessor directive

1As a solution paper, we choose program analysis as the priority in
the implementation. Other techniques like program synthesis or abstract
interpretation can also be workable.

processing is designed in the steps of code preprocessing and

patch update.

This paper makes the following major contributions:

• The goal of this paper is to address the two listed chal-

lenges in C program repair. This paper provides practical

solutions for developers to automate patch generation for

C programs.

• We present a framework of C program repair with five

main steps. This framework supports potential solutions

to the challenges of test-independent repair and prepro-

cessor directive processing.

The rest of this paper is organized as follows. Section II

presents the potential solutions to challenges in C program

repair and our proposed framework. Section III discusses the

techniques in our solutions. Section IV concludes.

II. POTENTIAL SOLUTIONS TO CHALLENGES IN C

PROGRAM REPAIR

This section presents our potential solutions to the chal-

lenges in C program repair. We show a framework and two

solutions to the challenges.

A. Overview

In the community of program repair, most of existing repair

methods follow an idea that first localizes bugs and then

fixes bugs [10], [11]. The framework in this paper shares the

same idea and adapts to fix C program bugs. As mentioned

in Section I, Fig. 1 shows an overview of our framework

for C program repair. To make program repair practical, our

framework assumes that the input is a buggy C program

and the output is its patched version. This assumption shares

the same input and output as manually bug fixing. Optional

inputs include pre-defined specifications by developers, issue

reports from bug tracking systems, and human interactions

with developers. The optional inputs are unnecessary, but can

improve the correctness of patch generation.

As shown in Fig. 1, the proposed framework consists of five

main steps: code preprocessing, condition construction, patch

generation, patch update, and repair assessment. Among these

steps, code processing severs as a pre-step of the other four

steps and generates code symbols that replace the preprocessor

directives. The other four steps construct an iterative process

that keeps updating patches until the buggy program is as-

sessed as a fixed version.

In the four iterative steps, condition construction is designed

to extract patch conditions that can guide the repair behaviors

that lead to a correct patch. A patch condition in our work is

defined as a constraint that describes potential behaviors. For

example, if a pointer ptr is invoked in the source code, a

patch condition can be used to restrict the initialization of

the pointer, i.e., ptr != null. The patch conditions are

designed to meet the lack of test cases in test-independent

repair. The step of patch generation is to generate patches

via automatic techniques, like evolutionary computation in

GenProg [3] or symbolic execution in SemFix [8]. The step

of patch update is to statically rewrite the source code via
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merging the patch to the buggy version. The general idea of

patch generation and patch update in our work is similar to

that in existing methods [3], [4]. The step of repair assess-
ment provides a metric that assesses the quality of generated

patches. Such metrics can be defined as a fitness function that

qualifies the correctness of patches. The process of these four

steps iterates until a patch is acceptable by the step of repair

assessment.

The basic idea of our proposed framework is to address

two challenges in C program repair, including test-independent

repair and preprocessor directive processing. Among these five

steps in Fig. 1, the two steps of code preprocessing and con-

dition construction are specialized to meet the challenges in C

program repair. Condition construction is to restrict the patch

behaviors in the scenario of test-independent repair while code

preprocessing is to replace preprocessor directives. Solutions

to the challenge of test-independent repair are mainly designed

in the steps of condition construction, patch generation, and

repair assessment; solutions to the challenge of preprocessor

directive processing are mainly designed in the steps of code

preprocessing and patch update.

Existing methods in patch generation can be directly used

in the framework in Fig. 1. For example, the typical method

GenProg [3] assesses patches via defining a fitness function

based on the evaluation of test execution, i.e., how many test

cases are passed. Such a fitness function can be transformed

into a new function of evaluating how many patch conditions

are passed.

B. Solutions to Test-Independent Repair

The scenario of test-independent repair does not assume

that pre-defined test cases can cover all buggy behaviors in

the program under repair. This is different from the scenario

of existing work in test-based program repair. In test-based

program repair, test cases play an important role of isolating

incorrect patches although existing studies show that test cases

can result in plausible patches [12] and patch overfitting [5]

in program repair. If a patched program fails in executing

a test case, the patch can be labeled as an incorrect one; if

a patched program passes all test cases, the patch may be

correct or incorrect. That is, the failing of test execution can

be directly used to detect incorrect patches, but the passing of

test execution may not.

Test cases cannot cover all positions of patches [13]. This is

common in large C programs. In existing research of test-based

program repair, the lack of test cases relaxes the boundary

of patch generation. Then the output of program repair tends

to be the output of program synthesis [14]. That is, a large

number of patches can be generated and it is difficult to

isolate incorrect patches from all these generated patches. The

emerging application of large language models aggravates this

difficulty [9].

Our solution to the challenge of test-independent repair is

to extract constraints from source code as patch conditions.

Such constraints can cover the program safety, but cannot

cover the functional behaviors. For example in C programs,

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void func(int bound, int index)
{

char *ptr = (char *) malloc (bound * sizeof(char));
strcpy(ptr, "demo"); // No potential patch condition for ptr
printf("%c", ptr[index]); // Two potential patch conditions for

ptr and index
[...]

}

Fig. 2. Snippet of a C program with a pointer ptr and an array index index.

a pointer must be initialized before its invocation; an index

of arrays must be not out of the array boundary; a dynamic

memory allocation must be released after its usage. The

above examples of C code can be converted into constraints

for patch generation, such as a pointer ptr != null for

pointer invocation, an array index index >= 0 && index
< arrayBoundary for array usage, and a pair of malloc(
); free(); for memory allocation. Developers can define

such constraints for different scenarios, i.e., patch conditions

in our work.

Patch conditions can be automatically constructed. For each

constraint, human developers can define a rule for constraint

extraction. We plan to use program analysis to automate the

process of constraint extraction. Program analysis can parse

source code into Abstract Syntax Trees (ASTs) and then

traverse the ASTs [15], [16]. Code symbols like pointers or

APIs of memory usage can be extracted via program analysis.

Program analysis consists of two general categories: static

analysis and dynamic analysis [17]. Static analysis parses the

whole program structures without running programs while

dynamic analysis monitors and parses the executed program

paths with running programs. With the support of dynamic

analysis, concrete values of variables during program execu-

tion can be monitored and collected. For a buggy program,

there are more than one patch conditions in the source code.

Then a general solution is to define a metric to rank potential

positions for patch generation and then generate patches for

each potential position.

Fig. 2 uses a code snippet to demonstrate the patch con-

ditions in a C program. For the scenario of test-independent

repair, no test case is used to supervise the patch generation.

Among the three lines in the code snippet of func(), both
Line 2 and Line 3 contains the pointer ptr: at Line 2,

ptr receives an assignment of a string; at Line 3, ptr is

invoked to access its value. Then at Line 2, no potential patch

condition exists for ptr; at Line 3, a patch condition ptr
!= null for pointer invocation should be satisfied. Line 3

also accesses the value of ptr[index]. Then, another patch
condition index >= 0 && index < bound should be

satisfied. Thus, as shown in Fig. 2, there are two potential

patch conditions at Line 3 of func() and no patch condition
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at Line 2. In the step of patch generation, any patch that

violates the two patch conditions at Line 3 can be discarded.

In the proposed framework in Fig. 1, the step of condition

construction is to designed to extract patch conditions. We pro-

vide a method of implementation for condition construction.

First, for a given buggy program, we apply static analysis to

collect all positions that potential patch conditions exist. Sec-

ond, for each patch condition, we use program instrumentation

techniques to update the source code via inserting monitors of

variable values. A simple way of implementing monitors is to

add logging code for a patch condition. Third, for the buggy

code with instrumentation, executing the code can collect the

runtime values for constructing patch conditions.

In the step of patch generation, all positions (e.g., all

statements) in the buggy programs can be ranked according a

pre-defined metric. For example, a pre-defined metric could be

the number of patch conditions in each position or the depth

in a dependency graph in the ASTs. Then automatic patch

generation can be used to generate patches for each position.

Existing techniques of patch generation can be directly used,

such as evolutionary computation in GenProg [3], constraint

solving in Nopol [11], code reuse in sharpFix [18], and code

transplantation in TransplantFix [19]. The output of the step

of patch generation is one or more patches that can be used

to update the buggy program.

In the step of patch assessment, runtime values of patch

conditions are collected and evaluated. An ideal patch should

be a patch that violates none of patch conditions. A simple

way of designing a quantitative metric is to convert the

number of violated patch conditions into a numeric value. This

quantitative metric can be used to rank patches: a patch with

a low value of violated patch condition is prioritized.

In the above paragraphs of in this section, we present poten-

tial solutions to the challenge of test-independent repair. The

basic assumption is no test case that covers the buggy position.

However, it is possible to add other inputs to improve the

quality of patch generation. Such optional inputs may contain

pre-defined specifications, issue reports, warnings from static

parsers [20], etc. These optional inputs can be transformed

into constraints, which sever as the supplementation to patch

conditions for test-independent repair.

C. Solutions to Preprocessor Directive Processing

Preprocessor directives are a type of special language

feature in the C language. The preprocessor directives are

not contained in C grammars, but widely exist in most of

C programs. If a C program with preprocessor directives is

sent to a compiler, preprocessor directives are replaced with

code symbols (also called tokens) before compilation. Thus,

the preprocessor directives are not visible to C compilers. A

preprocessor directive can be used to control the C program

behaviors, including the setup of values (e.g., #define) or

the control of compilation (e.g., #ifdef-#else-#endif).
Since preprocessor directives are not defined in C grammars,

existing methods of program repair directly ignore the process-

ing of preprocessor directives. Fig. 3 presents a code snippet

#include <stdio.h>
#include <stdlib.h>

int main()
{
#ifdef PI

printf("PI is %f\n", PI);
#else

#define PI 3.14159
printf("PI is %f\n", PI);

#endif
[...]
return 0;

}

Fig. 3. Snippet of a C program with preprocessor directives.

with preprocessor directives that can control the numerical

precision of the circular constant inside the C code. The

preprocessor directives can be replaced with C code before

the source code is compiled.

Our solution to preprocessor directive processing is to

generate code symbols by replacing preprocessor directives.

This shares the same idea that a C compiler processes the

preprocessor directives: preprocessor directives can be handled

before the program is compiled. This indicates that all the

dependencies of preprocessor directives can be extracted. We

use static analysis to extract the constraints among preproces-

sor directives and then parse the ASTs to detect all values

preprocessor directives (a value in a preprocessor directive

can be a constant or a string). Based on the static analysis,

code symbols can be identified from the ASTs. There is

no existing tool for preprocessor directives in C programs.

The implementation of such a tool relies on the context-free

grammar in C programs.2

In our proposed framework, the step of code preprocessing

is specialized for the preprocessor directives reprocessing. The

basic idea is to implement static analysis for preprocessor

directives and to replace these preprocessor directives with

code symbols. The step of code reprocessing can be viewed

as a first step in a tool of C program repair. As shown in Fig. 1,

the step of code reprocessing does not need to be involved in

the loop of patch generation and patch update.

To make a user-friendly patch, the step of patch update has

to reversely converted code symbols in a patched program into

preprocessor directives. For the reversed conversion from code

symbols to preprocessor directives, the trace of replacement

in the step of code reprocessing should be recorded. This is

different from the general design of patch update in test-based

program repair.

III. DISCUSSIONS

Existing research work has rarely covered test-independent

repair and preprocessor directives reprocessing in C program

2The context-free grammar of preprocessor directives is used in the imple-
mentation of C compilers. This grammar can be used in the implementation
of the static analysis of replacing preprocessor directives.
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repair. We discuss empirical evaluation and extension of the

proposed framework in this section.

A. Empirical Evaluation

Automated program repair is expected to replace the manu-

ally bug fixing by developers. To date, fully replacing manual

work by automated program repair is far from being carried

out. A straightforward way of evaluating program repair is the

empirical evaluation on real-world buggy programs.

Existing benchmarking datasets such as CoreBench [21],

C-Pack of IPAs [22], BugsCpp [23] pay great efforts in data

collection and reproduction. However, these benchmarking

datasets cannot be directly used to evaluate test-independent

repair and preprocessor directive processing due to the as-

sumption of test availability. To conduct a dataset that can be

used to evaluate the challenges of C program repair, one way

is to revise existing benchmarking datasets via removing func-

tional bugs and test cases; another way is to extract new buggy

C programs that relate to safety or security bugs, like instances

of Common Vulnerabilities & Exposures (CVEs) [24].

B. Extension of the Framework

Our solutions in Section II are automatic techniques of

program analysis. This is a bit different from the majority of

the research community of program repair, like repair methods

based on machine learning or deep learning.

The scenario of test-independent repair does not rely on

test cases while the scenario of preprocessor directives allows

the replacement of code symbols. This indicates that we lose

several toolkits for the correctness evaluation of patch gener-

ation or the isolation of incorrect patches. In our work, we

choose program analysis to implement the proposed solutions

since the result of program analysis can be inferred and is

explainable. It is possible to extend the propose framework

with intelligent methods based on machine learning, deep

learning, or large language models. For example, the code

symbols that replacing the preprocessor directives can be

predicted with learning-based repair methods.

IV. CONCLUSIONS

This paper presents potential solutions to two chal-

lenges in C program repair, including test-independent repair

and preprocessor directive processing. The solution to test-

independent repair is to automatically construct patch condi-

tions for C programs via parsing the syntax structures; the

solution to preprocessor directive processing is to generate

code symbols to replace preprocessor directives. Both above

solutions are considered to be implemented with program

analysis techniques.

To implement the idea of C program repair, we propose a

framework that embeds our solutions. This framework consists

of five iterative steps, called code preprocessing, condition

construction, patch generation, patch update, and repair as-

sessment. The two steps of condition construction and code

preprocessing are designed for solutions to test-independent

repair and preprocessor directive processing, respectively. The

other three steps, i.e., patch generation, patch update, and

repair assessment, share similar ideas of existing methods of

program repair. For the step of patch generation, existing tech-

niques like evolutionary computation and symbolic execution

can be directly applied to generate C patches. This reduces

the difficulties of creating new methods of patch generation in

tackling the challenges in C program repair.
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