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ABSTRACT

Programs are becoming increasingly complex and typically contain
an abundance of unneeded features, which can degrade the perfor-
mance and security of the software. Recently, we have witnessed a
surge of debloating techniques that aim to create a reduced version
of a program by eliminating the unneeded features therein. To de-
bloat a program, most existing techniques require a usage profile of
the program, typically provided as a set of inputs 𝐼 . Unfortunately,
these techniques tend to generate a reduced program that is over-
fitted to 𝐼 and thus fails to behave correctly for other inputs. To
address this limitation, we propose DomGad, which has two main
advantages over existing debloating approaches. First, it produces a
reduced program that is guaranteed to work for subdomains, rather
than for specific inputs. Second, it uses stochastic optimization to
generate reduced programs that achieve a close-to-optimal trade-
off between reduction and generality (i.e., the extent to which the
reduced program is able to correctly handle inputs in its whole
domain). To assess the effectiveness of DomGad, we applied our
approach to a benchmark of ten Unix utility programs. Our results
are promising, as they show that DomGad could produce debloated
programs that achieve, on average, 50% code reduction and 95%
generality. Our results also show that DomGad performs well when
compared with two state-of-the-art debloating approaches.
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1 INTRODUCTION

Today’s programs are complex and provide an abundance of fea-
tures [31]. Typically, however, only a small fraction of these features
are commonly accessed by users [23], and the presence of unneces-
sary features can harm program performance, waste power, and in-
troduce security issues [64]. For this reason, debloating techniques,
which aim to remove unneeded features from a program and create
a reduced version of it, are becoming increasingly popular.

Given a program 𝑃 to be reduced, existing debloating techniques
(e.g., [22, 41, 45, 55, 57]) usually require a usage profile of 𝑃 , typically
provided as a set of inputs 𝐼 . These techniques tend to remove as
much code in 𝑃 as possible and generate a minimal program 𝑃𝑑𝑒𝑏
that behaves correctly for inputs in 𝐼 . Because the resulting program
is only guaranteed to work for 𝐼 , it is likely to be overfitted to 𝐼 and
to fail for other inputs. We argue that a program that is guaranteed
to only work for specific inputs is not generally usable, as it is rarely
the case that one can provide a completely accurate usage profile.

To address this limitation of existing approaches, we propose
DomGad, a novel debloating approach that has two main advan-
tages over the state of the art. First, it produces reduced programs
that are guaranteed to handle subdomains of inputs, rather than
specific inputs; that is, DomGad produces programs that behave
correctly for every possible input that belongs to these subdomains.
Moreover, for any input that does not belong to a handled subdo-
main, the reduced programs would block the execution to avoid
unexpected behaviors (e.g., crashes), so as to achieve enhanced
robustness. In contrast, because reduced programs produced by
an input-based approach are only guaranteed to behave correctly
for specific inputs, the only way they have to avoid unexpected
behaviors is to block the execution for any unknown input. Second,
unlike existing approaches that take reduction as the only goal for
debloating, DomGad also accounts for generality—the extent to
which a reduced program could correctly handle inputs in its whole
domain. Because there is a tension between reducing the size of a
program and preserving its generality, DomGad aims to strike a
balance between these two competing needs.

In our approach, we use a path 𝜋 to characterize a subdomain
of program 𝑃 , and use the notation D(𝜋) to indicate all the inputs
of 𝑃 that belong to that subdomain (i.e., all the inputs that follow
the same path 𝜋 ). In order to produce a reduced program 𝑃 ′ that
handles a subdomainD(𝜋), and behaves correctly for all the inputs
in it, DomGad conservatively includes in 𝑃 ′ all the code executed
along path 𝜋 . The overall goal of DomGad is to generate a reduced
program 𝑃 ′ that handles the set of subdomains of 𝑃 that achieves
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the best tradeoff between reduction and generality. Intuitively, as-
suming the inputs are uniformly distributed across the program
domain, this would correspond to producing a program that is as
small as possible while being able to handle as many inputs as
possible in the domain.

To achieve this goal, we formulate debloating as an optimization
problem. Specifically, given a reduced program 𝑃 ′ for 𝑃 , we (i)
quantify its reduction 𝑟 and generality 𝑔, and (ii) define an objective
function that computes an objective score based on 𝑟 and 𝑔, so as to
make the tradeoffs between those two values explicit. We then try
to identify, among all possible reduced programs 𝑃 ′ in the search
space, the one with the highest objective score (𝑃𝑑𝑒𝑏 ).

While quantifying the reduction achieved by 𝑃 ′ by measuring
how much code has been removed from 𝑃 is relatively straightfor-
ward, quantifying its generality is extremely challenging. Concep-
tually, one could identify every possible path 𝜋 in 𝑃 ′, and exactly
count the number of inputs that follow that path using model count-
ing [19]. Unfortunately, however, this is typically infeasible, as the
number of paths within 𝑃 ′ is generally unbounded, and model
counting is complex and has conceptual limitations [19]. We there-
fore propose a practical technique that is based on the key insight
that it is possible to model the underlying input distribution of
𝑃 ’s domain and leverage a sampling-based approach. Specifically,
DomGad (i) draws samples from the input distribution trying to
identify a finite set of paths Π that can cover a significant fraction
of inputs in the entire domain (i.e., it makes sense to focus on Π
when debloating 𝑃 ) and (ii) estimates the size of the subdomain
corresponding to each path 𝜋 ∈ Π based on the number of sampled
inputs that result in that path. Although our sampling-based ap-
proach can only compute an approximation of the generality of a
given 𝑃 ′, it is possible to bound the error of the computed solution.
Therefore, given enough samples, our approach can yield results
with an estimation error being arbitrarily small.

Our overall debloating process works as follows. DomGad takes
as inputs a program 𝑃 and an input sampler 𝐼𝑆 that models the
inputs distribution in 𝑃 ’s domain and generates input samples.
Given these inputs, DomGad performs three main steps: (1) path
identification, (2) path quantification, and (3) stochastic optimization.
In the first step, DomGad invokes 𝐼𝑆 to generate input samples and
identify a finite set of paths Π that cover, with high confidence,
a fraction of inputs in the domain whose combined probability
is no less than a given lower bound. In the second step, DomGad
invokes 𝐼𝑆 again to generate additional input samples, which it uses
to estimate, for each 𝜋 ∈ Π, the size of the subdomain characterized
by 𝜋 . Based on these estimates, DomGad computes, for any reduced
program 𝑃 ′ it generates that preserves a subset of paths of Π, the
generality of 𝑃 ′. In this step, DomGad also computes the reduction
for 𝑃 ′, by comparing its size and attack surface (measured in terms
of ROP gadgets [54]) with those of the original program 𝑃 . Finally,
in the third step, DomGad applies an MCMC-based approach [18]
to perform stochastic optimization, with the goal of producing a
debloated program 𝑃𝑑𝑒𝑏 that achieves an optimal tradeoff between
reduction and generality.

To assess the usefulness of DomGad, we implemented the tech-
nique in a prototype tool and applied it to a benchmark of ten
Unix utility programs used in previous work [11]. We compared
DomGad with Debop [61], a generality-aware debloating technique

Table 1: Paths identified for program chown.

Path Input PathProb

0 uid:sudo sf 0.146
1 -h uid:uid f 0.14
2 -h uid:uid sf 0.147
3 uid:uid d/d/d/f 0.29
4 uid:uid f 0.139
5 -R uid:sudo f 0.139

uid: user id; sf: symbolic file; f: file; d: directory.

that we developed in previous work, and Chisel [22], a state-of-
the-art debloating technique that focuses exclusively on reduction.
Our results are promising. DomGad was able to produce a reduced
program that achieves, on average, 50% code reduction and 95%
generality. Moreover, DomGad outperformed Debop in terms of
generating programs with better tradeoffs between reduction and
generality. Finally, DomGad was able to achieve reduction results
comparable to those of Chisel, which does not consider generality.

The main contributions of this paper are:
• A new subdomain-based, generality-aware debloating tech-
nique, DomGad, that uses stochastic optimization to gener-
ate debloated programs that achieve good tradeoffs between
reduction and generality.
• An empirical evaluation that shows the effectiveness of
our technique and confirms that it is possible to perform
generality-aware debloating.
• A prototype implementation of DomGad that is publicly
available, together with our experiment infrastructure (see
https://sites.google.com/view/domgad/).

2 ILLUSTRATIVE EXAMPLE

In this section we show, as an example, how DomGad debloats
chown (v.8.2), a Unix utility that changes the user and group own-
ership of a file. chown is one of the benchmark programs [11] we
used to evaluate DomGad (see Section 5.2). To apply DomGad on
chown, we developed an input sampler based on the usage profile
(i.e., set of inputs) associated with the program and provided at [11]
(see Section 5.2.2 for more details).

To debloat chown (𝑃 ), DomGad first uses the input sampler 𝐼𝑆 to
identify a set of paths Π that cover, with high confidence, a fraction
of inputs in the domain whose combined probability is no less than
a given lower bound (𝑐 = 0.95), as explained in Section 4.2. This
implies that the execution of 𝑃 based on a random input would
yield a path in Π with a 95% probability. For chown, a significant
fraction of inputs follow a small number of paths, so the result of
this step is the selection of only six paths, shown in Table 1 together
with the inputs used to identify them.

In the second step (Section 4.3), DomGad uses again sampling
to compute the path probability 𝑝 (𝜋) for each 𝜋 , which it uses to
estimates the size of the subdomain characterized by 𝜋 . For chown,
DomGad generates a total of 𝑁 = 8321 input samples—a number
of samples that allows DomGad to have an estimation error bound
within a small range (±0.03) and with a high statistical confidence
(0.95). Then, for each 𝜋 , DomGad counts the number 𝑛 of sampled
inputs that exercise 𝜋 and computes 𝑝 (𝜋) as 𝑛/𝑁 . The last column
of Table 1 shows the resulting path probability for each path in our
example.
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A reduced program 𝑃 ′ produced by DomGad preserves a subset
of paths Π′ ⊆ Π. DomGad computes the value of reduction 𝑟 for
𝑃 ′ in terms of size (measured as number of statements) and attack
surface (measured as number of ROP gadgets [54]). Conversely,
DomGad computes the value of generality 𝑔 for 𝑃 ′ as the sum
of the path probabilities for all paths in Π′. As an example, the
generality of a reduced program that preserves paths Nos. 1 and
3 is 0.43 (0.14 + 0.29). Given 𝑟 and 𝑔, DomGad uses an objective
function defined as (1−𝑘𝑔) · 𝑟 +𝑘𝑔 ·𝑔, where 𝑘𝑔 ∈ [0, 1] is a weight.

In the third step, defined in Section 4.4, DomGad uses an MCMC-
based approach to sample a number of reduced programs and iden-
tify 𝑃𝑑𝑒𝑏 with the highest objective score. For chown, using 𝑘𝑔 = 0.3,
DomGad produces a 𝑃𝑑𝑒𝑏 that preserves five of the six paths (all but
path No. 5) and has 𝑟 = 0.63 and 𝑔 = 0.86; that is, 𝑃𝑑𝑒𝑏 contains 37%
of the code in the original program and covers 86% of its domain,
according to the distribution modeled by 𝐼𝑆 .

Changing the value of 𝑘𝑔 allows DomGad to explore different
tradeoffs between reduction and generality. Using 𝑘𝑔 = 0.7, for
instance, which gives more weight to generality, DomGad produces
𝑃𝑑𝑒𝑏 that preserves all the six paths, achieving lower reduction
(𝑟 = 0.56) but higher generality (𝑔 = 1).

3 PRELIMINARY DEFINITIONS

3.1 Subdomain and Subdomain Quantification

Given a program 𝑃 , its entire input domainD, and a path 𝜋 of 𝑃 , we
defineD(𝜋) as the subdomain of inputs that exercise 𝜋 . We assume
that the inputs of 𝑃 in D follow a probability distribution with
probability density function 𝑑 . For an input 𝑖 , 𝑑 (𝑖) ∈ [0, 1] measures
the likelihood of the occurrence of 𝑖 . By definition, Σ𝑖∈D𝑑 (𝑖) = 1.
We use path probability 𝑝 (𝜋) to quantify the size of D(𝜋), and
define 𝑝 (𝜋) as the sum of the density values for all inputs in D(𝜋).
More formally, we have

𝑝 (𝜋) = Σ𝑖∈D(𝜋 )𝑑 (𝑖) .

Assuming inputs in D are uniformly distributed, 𝑝 (𝜋) can be sim-
plified as 𝑝 (𝜋) = #D(𝜋)/#D,where #D(𝜋) is the number of inputs
that belong to D(𝜋) and #D is the total number of inputs.

3.2 Reduction

We measure the reduction for a program in terms of its size and
attack surface. Given a program 𝑃 and its reduced version 𝑃 ′, we
define the size reduction 𝑠𝑟𝑒𝑑 as

𝑠𝑟𝑒𝑑 (𝑃, 𝑃 ′) = 𝑠𝑖𝑧𝑒 (𝑃) − 𝑠𝑖𝑧𝑒 (𝑃 ′)
𝑠𝑖𝑧𝑒 (𝑃) ,

where 𝑠𝑖𝑧𝑒 (·) measures the size of a program. Similar to [22], we
define 𝑠𝑖𝑧𝑒 (𝑃) as the number of statements contained in 𝑃 . We
define the attack surface reduction 𝑎𝑟𝑒𝑑 as

𝑎𝑟𝑒𝑑 (𝑃, 𝑃 ′) = 𝑎𝑡𝑡𝑘𝑠𝑢𝑟 𝑓 (𝑃) − 𝑎𝑡𝑡𝑘𝑠𝑢𝑟 𝑓 (𝑃 ′)
𝑎𝑡𝑡𝑘𝑠𝑢𝑟 𝑓 (𝑃) ,

where𝑎𝑡𝑡𝑘𝑠𝑢𝑟 𝑓 (·)measures the attack surface of a program. Similar
to [22, 41], we define 𝑎𝑡𝑡𝑘𝑠𝑢𝑟 𝑓 (𝑃) as the number of ROP (Return-
Oriented Programming) gadgets [54] in 𝑃 ’s executable. An ROP
gadget is a sequence of machine instructions that ends with a re-
turn instruction and is relevant because an attacker could take
advantage of a vulnerability in the program (e.g., a buffer-overflow)

to overwrite a gadget’s return address, hijack the control-flow, and
execute malicious code [6]. Finally, we define the overall reduction
𝑟𝑒𝑑 for a program as the weighted sum of 𝑠𝑟𝑒𝑑 and 𝑎𝑟𝑒𝑑 ,

𝑟𝑒𝑑 (𝑃, 𝑃 ′) = (1 − 𝑘𝑟 ) · 𝑠𝑟𝑒𝑑 (𝑃, 𝑃 ′) + 𝑘𝑟 · 𝑎𝑟𝑒𝑑 (𝑃, 𝑃 ′),

where 𝑘𝑟 ∈ [0, 1] is the weight.

3.3 Generality

Given a reduced program 𝑃 ′, we define generality as the measure
of its ability to correctly handle inputs in D. We say that 𝑃 ′ can
handle an input 𝑖 if 𝑃 ′ can produce the same output as 𝑃 for 𝑖 . We
compute the generality 𝑔𝑒𝑛 for 𝑃 ′ as the sum of path probabilities
for the paths preserved in 𝑃 ′, formally defined as

𝑔𝑒𝑛(𝑃 ′) = Σ𝜋 ∈Π∧𝑆 (𝜋 ) ⊆𝑆 (𝑃 ′)𝑝 (𝜋),

where Π is a set of paths, 𝑆 (𝜋) is the set of statements executed
along path 𝜋 , and 𝑆 (𝑃 ′) is the set of statements contained in 𝑃 ′.
In theory, Π should include all paths of 𝑃 . To make the approach
practical, however, in the first step of our technique we select a
finite subset of paths that cover a fraction of inputs in the domain
whose combined probability is no less than a given lower bound.

3.4 Objective Function

To quantify the tradeoff between reduction 𝑟𝑒𝑑 and generality 𝑔𝑒𝑛,
we define an objective function O that computes an objective score
as the weighted sum of 𝑟𝑒𝑑 and 𝑔𝑒𝑛, formally defined as

O(𝑃, 𝑃 ′) = (1 − 𝑘𝑔) · 𝑟𝑒𝑑 (𝑃, 𝑃 ′) + 𝑘𝑔 · 𝑔𝑒𝑛(𝑃 ′),

where 𝑘𝑔 ∈ [0, 1] is the weight applied to 𝑟𝑒𝑑 and 𝑔𝑒𝑛.

3.5 Subdomain-Based Debloating

Given a program 𝑃 , a set of paths Π, and the two weights 𝑘𝑟 and 𝑘𝑔 ,
the goal of subdomain-based debloating is to produce a reduced pro-
gram 𝑃𝑑𝑒𝑏 that preserves a subset of paths Π′ ⊆ Π and maximizes
O. Formally, we have

𝑃𝑑𝑒𝑏 = argmax
Π′⊆Π

O(𝑃, 𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (𝑃,Π′)),

where 𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (𝑃,Π′) is the reduced program that preserves all the
paths in Π′. Note that one can use 𝑘𝑟 and 𝑘𝑔 to obtain reduced pro-
grams with different tradeoffs between 𝑠𝑟𝑒𝑑 and 𝑎𝑟𝑒𝑑 and between
𝑟𝑒𝑑 and 𝑔𝑒𝑛.

4 OUR TECHNIQUE: DOMGAD

Figure 1 provides an overview of DomGad’s debloating process. We
first discuss the input sampler used by DomGad and then present
the three steps of the technique.

4.1 Input Sampler

DomGad relies on an input sampler to generate sampled inputs
for path identification and quantification. An input sampler 𝐼𝑆 is
a probabilistic program that uses a set of pre-defined sampling
functions to generate random values. To be used within DomGad,
an 𝐼𝑆 must provide the following four functions:
• getUniformInt(int𝑚, int 𝑛): returns a random integer be-
tween𝑚 and 𝑛, selected from a uniform distribution.
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Figure 1: High-level overview of DomGad.

• getUniformReal(double 𝑚, double 𝑛): returns a random
real number between𝑚 and 𝑛, selected from a uniform dis-
tribution.
• getNorm(double𝑚𝑒𝑎𝑛, double 𝑠𝑑𝑒𝑣): returns a random real
number selected from a normal distribution defined by the
given mean (𝑚𝑒𝑎𝑛) and standard-deviation (𝑠𝑑𝑒𝑣).
• getBinomial(int 𝑛, double 𝑝): returns a random integer that
represents the number of trials for which heads occur when
flipping a biased coin. The total number of trials is 𝑛, and
the bias of the coin is determined by 𝑝 .

Although these functions do not directly produce boolean, char-
acter, or string values, it is possible to generate such values using
these functions. For example, to get a random character between ‘a’
and ‘z’, we can call getUniformInt to generate an integer between
97 and 122 and convert it to a character.

DomGad relies on 𝐼𝑆 to obtain a sufficient set of sampled inputs
for effective subdomain identification and quantification. In this
first instance of our approach, we assume that the user is familiar
with the usage of the program and can provide a reasonable sampler.
As discussed in Section 7, in future work we plan to investigate
automated approaches for synthesizing an input sampler, possibly
based on a provided usage profile.

4.2 Path Identification

DomGad performs this step to identify a finite set of paths Π that
cover, with high confidence, a fraction of inputs in 𝑃 ’s domain
whose combined probability is no less than a given domain coverage
lower bound 𝑐 ∈ (0, 1). In other words, the sum of path probabilities
for the paths in Π should be no smaller than 𝑐: Σ𝜋 ∈Π𝑝 (𝜋) ≥ 𝑐 .
To identify Π, DomGad performs a statistical, simulation-based
approach that is analogous to the one used in [51] and is described
in Algorithm 1.

The algorithm starts by computing parameter 𝐾 , which it uses
to decide when to terminate the computation, and by initializing
the set of paths 𝑃𝐼 to the empty set (lines 1–2). It then enters its
main loop (lines 4–11) and, in each iteration of the loop, it generates
sample input 𝑖 and computes the path 𝑝𝑖 exercised by 𝑖 (lines 5–6).
If the path is already in 𝑃𝐼 , the algorithm increments counter 𝑐𝑜𝑢𝑛𝑡
(line 8). Otherwise, it resets 𝑐𝑜𝑢𝑛𝑡 to 0 and adds 𝑝𝑖 to 𝑃𝐼 (lines 10-11).
The loop terminates if no new paths are identified for 𝐾 subsequent
iterations.

As explained in [51], a suitable 𝐾 can be computed based on
parameters 𝑐 and 𝐵 through a Bayesian factor test [25]. Specifically,
𝐾 can be computed as 𝐾 ≥

⌈− log𝐵
log𝑐

⌉
. By tuning 𝑐 and 𝐵, DomGad

Algorithm 1 Path identification.
Input: 𝑃 : original program
Input: 𝐼𝑆 : input sampler
Input: 𝑐 : domain coverage lower bound
Input: 𝐵: confidence parameter
Output: 𝑃𝐼 : a list of paths
1: 𝐾 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐾 (𝑐, 𝐵)
2: 𝑃𝐼 ← {}
3: 𝑐𝑜𝑢𝑛𝑡 ← 0
4: while 𝑐𝑜𝑢𝑛𝑡 < 𝐾 do

5: 𝑖 ← 𝐼𝑆 .𝑔𝑒𝑡𝑂𝑛𝑒𝑆𝑎𝑚𝑝𝑙𝑒 ()
6: 𝑝𝑖 ← 𝑔𝑒𝑡𝑃𝑎𝑡ℎ (𝑃, 𝑖)
7: if 𝑝𝑖 ∈ 𝑃𝐼 then
8: 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1
9: else

10: 𝑐𝑜𝑢𝑛𝑡 ← 0
11: 𝑃𝐼 ← 𝑃𝐼 ∪ 𝑝𝑖
12: return 𝑃𝐼

could generate Π that achieves a higher coverage with higher con-
fidence [51]. For example, given 𝐵 = 100 and 𝑐 = 0.95, 𝐾 ≥ 90.
This means that, if DomGad does not identify new paths for 90
subsequent iterations, the resulting set of paths Π would cover, with
high confidence, a set of inputs in the domain with a combined
probability that is at least 0.95.

4.3 Path Quantification

In this step, DomGad performs sampling to estimate the path prob-
ability for each path in Π. For a given 𝜋 ∈ Π, an input sample 𝑖
drawn from the underlying distribution either (i) exercises or (ii)
does not exercise 𝜋 . Therefore, a sample can be considered the
instance of a random variable 𝑋𝑖 following the Bernoulli distribu-
tion 𝑋𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝 (𝜋)), where 𝑝 (𝜋) is the path probability to
be estimated. Let 𝑋 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛 be the random variable
representing the sum of 𝑛 independent samples (𝑋 is known to
follow the Binomial distribution). We define 𝑝 (𝜋) as 𝐸 (𝑋 ) = 𝑋/𝑛,
the expectation of 𝑋 . To compute 𝑝 (𝜋), the estimation of 𝑝 (𝜋),
DomGad performs a sequence of 𝑛 Bernoulli trials to get 𝑛 sampled
inputs. Among these inputs, DomGad counts how many exercise
𝜋 , 𝑛𝜋 , and computes 𝑝 (𝜋) = 𝑛𝜋/𝑛.

DomGad performs acceptance sampling [50, 65] to bound errors.
To do this, we define the following error-bounding constraint:

𝑃𝑟 (𝑝 (𝜋) ∈ [𝑝 (𝜋) − 𝜖, 𝑝 (𝜋) + 𝜖]) ≥ 1 − 𝛼.

This constraint contains two error-bounding parameters, an accu-
racy parameter 𝜖 and a confidence parameter 𝛼 , and specifies that
the estimated 𝑝 (𝜋) will deviate from the real 𝑝 (𝜋) by at most 𝜖
with probability 1− 𝛼 . By tuning 𝜖 and 𝛼 to small values, 𝑝 (𝜋) gets
closer to 𝑝 (𝜋) with high confidence. Given specific 𝜖 and 𝛼 , we use
the two-sided Chernoff bound [9, 50] to compute a lower bound 𝑛𝑙𝑏
for the sampling number 𝑛 as 𝑛𝑙𝑏 = 2+𝜖

𝜖2
ln 2
𝛼 . This means that, if
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Algorithm 2 Path probability estimation.
Input: 𝑃 : original program
Input: 𝐼𝑆 : input sampler
Input: 𝑃𝐼 : set of previously identified paths
Input: 𝜖 : accuracy parameter for error-bounding
Input: 𝛼 : confidence parameter for error-bounding
Output: 𝑝𝑖𝑚𝑎𝑝 : a map that maps a path to its estimated path probability
1: 𝑛𝑙𝑏 ← 𝑔𝑒𝑡𝑆𝑎𝑚𝑝𝑙𝑒𝑁𝑢𝑚 (𝜖, 𝛼)
2: 𝑝𝑖𝑚𝑎𝑝 ← {}
3: for 𝑝𝑖 ∈ 𝑃𝐼 do
4: 𝑝𝑖𝑚𝑎𝑝.𝑠𝑒𝑡 (𝑝𝑖, 0)
5:
6: 𝑖 ← 0
7: while 𝑖 <= 𝑛𝑙𝑏 do

8: 𝑖𝑛 ← 𝐼𝑆 .𝑔𝑒𝑡𝑂𝑛𝑒𝑆𝑎𝑚𝑝𝑙𝑒 ()
9: 𝑝𝑖 ← 𝑔𝑒𝑡𝑃𝑎𝑡ℎ (𝑃, 𝑖𝑛)
10: if 𝑝𝑖 ∈ 𝑃𝐼 then
11: 𝑐𝑜𝑢𝑛𝑡 ← 𝑝𝑖𝑚𝑎𝑝.𝑔𝑒𝑡 (𝑝𝑖)
12: 𝑝𝑖𝑚𝑎𝑝.𝑠𝑒𝑡 (𝑝𝑖, 𝑐𝑜𝑢𝑛𝑡 + 1)
13: 𝑖 ← 𝑖 + 1
14:
15: for 𝑝𝑖 ∈ 𝑃𝐼 do
16: 𝑐𝑜𝑢𝑛𝑡 ← 𝑝𝑖𝑚𝑎𝑝.𝑔𝑒𝑡 (𝑝𝑖)
17: 𝑝𝑖𝑚𝑎𝑝.𝑠𝑒𝑡 (𝑝𝑖, 𝑐𝑜𝑢𝑛𝑡/𝑛𝑙𝑏)
18: return 𝑝𝑖𝑚𝑎𝑝

we use 𝑛𝑙𝑏 samples to estimate 𝑝 (𝜋), the estimated 𝑝 (𝜋) will satisfy
the error-bounding constraint specified by 𝜖 and 𝛼 .

Given program 𝑃 , the input sampler 𝐼𝑆 , the set of paths 𝑃𝐼 pre-
viously identified, and the error-bounding parameters 𝜖 and 𝛼 ,
DomGad uses Algorithm 2 to compute path probability 𝑝 (𝑝𝑖) for
each 𝑝𝑖 ∈ 𝑃𝐼 . The algorithm generates 𝑝𝑖𝑚𝑎𝑝 , which maps each
path 𝑝𝑖 to its estimated path probability. The algorithm starts by
computing the number of input samples 𝑛𝑙𝑏 based on 𝜖 and 𝛼 (line
1) and initializing 𝑝𝑖𝑚𝑎𝑝 by setting a key for each 𝑝𝑖 ∈ 𝑃𝐼 and
mapping it to a value 0 (lines 2–4). It then iteratively generates a
total of 𝑛𝑙𝑏 samples and updates 𝑝𝑖𝑚𝑎𝑝 by counting the number of
samples each path covers (lines 7–13). A path 𝑝𝑖 covers a sample 𝑖𝑛
if running 𝑃 with 𝑖𝑛 exercises 𝑝𝑖 . Finally, the algorithm computes
the path probability for each 𝜋 based on its count and updates
𝑝𝑖𝑚𝑎𝑝 (lines 15–17). Note that DomGad does not need to generate
an independent set of 𝑛𝑙𝑏 samples to estimate path probability for
each 𝑝𝑖 ∈ 𝑃𝐼 . This is because paths are disjoint, that is, a sampled
input exercises at most one path. Therefore, the random variables
representing each path are independent.

4.4 Stochastic Optimization

Because there is a tension between reducing the size of a program
and preserving its generality, we formulate debloating as an opti-
mization problem. Our goal is to generate an optimally reduced
program that achieves the best tradeoff between reduction and gen-
erality. Since it is generally infeasible to enumerate every reduced
program in the search space, given its exponential size, DomGad
performs stochastic search, using an MCMC-based approach, to
find a close-to-optimal solution. We first summarize the MCMC ap-
proach we use, to make the paper self contained, and then present
our stochastic optimization algorithm.

4.4.1 MCMCandMetropolis-Hastings Algorithm. AnMCMC-based
approach is a sampling-based approach that is commonly used for
estimating properties, such as mean and variance, of a given proba-
bility distribution (whose probability density function is known).
The approach performs a sequential process to draw samples from
the distribution, where the generation of a new sample only de-
pends on the previous sample.

Algorithm 3 Simplified Metropolis-Hastings algorithm.
Input: 𝑓 : probability density function
Input: 𝑁 : number of samples to be generated
Output: 𝑆 : a set of samples
1: 𝑐𝑢𝑟𝑟_𝑠 ← initialize a sample
2: 𝑛 ← 0
3: while 𝑛 < 𝑁 do

4: 𝑛𝑒𝑤_𝑠 ← mutate 𝑐𝑢𝑟𝑟_𝑠 by adding random noise
5: 𝑟𝑎𝑡𝑖𝑜 ← 𝑓 (𝑛𝑒𝑤_𝑠)/𝑓 (𝑐𝑢𝑟𝑟_𝑠)
6: 𝑟𝑛 ← get a uniform random number ⊲ 𝑟𝑛 ∈ [0, 1)
7: if 𝑟𝑛 < 𝑟𝑎𝑡𝑖𝑜 then ⊲ accept the new sample
8: 𝑆 ← 𝑆 ∪ 𝑛𝑒𝑤_𝑠
9: 𝑐𝑢𝑟𝑟_𝑠 ← 𝑛𝑒𝑤_𝑠
10: 𝑛 = 𝑛 + 1
11: return 𝑆

An algorithm commonly used for performing MCMC-based sam-
pling is the Metropolis-Hastings (MH) algorithm, which generates
new samples through mutation, by adding random noise to the
current sample. A simplified version of the MH algorithm is shown
as Algorithm 3. It is simplified because we assume that the mutation
used for generating a new sample is symmetric (i.e., the probability
of generating a sample 𝑠 𝑗 based on 𝑠𝑖 is the same as that of generat-
ing 𝑠𝑖 based on 𝑠 𝑗 ). As we will show in Section 4.4.2, DomGad uses
symmetric mutations to generate samples of reduced programs.

The algorithm takes as input a probability distribution defined
by a probability density function 𝑓 and a maximum number of sam-
ples to be generated 𝑁 . It starts by initializing the current sample
𝑐𝑢𝑟𝑟_𝑠 (line 1) and setting the current number of samples𝑛 to 0 (line
2). Next, it iteratively generates new samples (lines 3–10). In each
iteration, it generates a new sample 𝑛𝑒𝑤_𝑠 by adding random noise
to 𝑐𝑢𝑟𝑟_𝑠 . To decide whether to accept 𝑛𝑒𝑤_𝑠 or not, it computes a
density ratio 𝑟𝑎𝑡𝑖𝑜 and generates a random number 𝑟𝑛 (lines 5–6). If
𝑟𝑛 is smaller than 𝑟𝑎𝑡𝑖𝑜 , the algorithm accepts 𝑛𝑒𝑤_𝑠 . This implies
that, when 𝑛𝑒𝑤_𝑠 is of higher density value, the algorithm always
accepts 𝑛𝑒𝑤_𝑠 . Otherwise, when 𝑛𝑒𝑤_𝑠 has a lower density, it can
still accept 𝑛𝑒𝑤_𝑠 based on its relative density drop (determined
by 𝑟𝑎𝑡𝑖𝑜). Intuitively, by accepting samples this way, the algorithm
is able to collect more samples from higher-density regions of the
distribution, while still occasionally visiting and collecting samples
from lower-density regions. This explains why the MH algorithm
can generate samples that effectively approximate the given distri-
bution. When a new sample 𝑛𝑒𝑤_𝑠 is accepted, the algorithm adds
it to the sample set 𝑆 , updates 𝑐𝑢𝑟𝑟_𝑠 , and increases 𝑛 (lines 8–10).

4.4.2 DomGad’s Stochastic Approach. DomGad uses the MH algo-
rithm to perform stochastic optimization and produce a reduced
program with the highest objective score. Following existing ap-
proaches [52, 61], we define a program distribution whose probabil-
ity density function 𝑓 is defined based on the objective function O.
Specifically, for a program 𝑃 and its reduced version 𝑃 ′, we define
the probability density function 𝑓 (𝑃, 𝑃 ′) as

𝑓 (𝑃, 𝑃 ′) = 1
𝑍
𝑒𝑥𝑝 (𝑘 · O(𝑃, 𝑃 ′)),

where 𝑘 is a constant, and 𝑍 is the normalizing factor that ensures
that the sum of density values for all programs is 1 [18, 52].

Bit-vector representation.A reduced program 𝑃 ′ in the search
space preserves a subset of paths Π′ ⊆ Π previously identified by
DomGad. We represent this using a bit-vector. Specifically, a bit-
vector 𝑏𝑖𝑡𝑣𝑒𝑐 ′ for 𝑃 ′ indicates which paths are preserved in 𝑃 ′,
where 𝑃 ′ preserves 𝜋 if it contains all the statements executed
along 𝜋 . A bit 𝑏 ′ in 𝑏𝑖𝑡𝑣𝑒𝑐 ′ represents a path 𝜋 ′ ∈ Π. If 𝑏 ′ is 1, this
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1 if (x) { s0 } else { s1 }
2 if (y) { s2 } else { s3 }

1 pi_a: x->s1 ->y->s3
2 pi_b: x->s0 ->y->s2
3 pi_c: x->s1 ->y->s2

Figure 2: An example of program composition.

means that 𝑃 ′ preserves 𝜋 ′, and thus 𝜋 ′ is selected to compose
𝑃 ′. Conversely, a value 0 for 𝑏 ′ indicates that 𝜋 ′ is not part of
𝑃 ′. It is worth noting that 𝑃 ′ may preserve 𝜋 ′ even if 𝜋 ′ is not
explicitly used to compose 𝑃 ′, if the code added to preserve other
paths happens to include the code for 𝜋 ′. Figure 2 illustrates this
situation with an example: if the programs on the left preserved
the two paths 𝑝𝑖_𝑎 and 𝑝𝑖_𝑏, it would also "accidentally" preserve
path 𝑝𝑖_𝑐 . DomGad accounts for these accidentally preserved paths
when computing the generality of a reduced program.

Sample mutation. DomGad mutates 𝑃 ′ to generate a new sam-
ple 𝑃 ′′ by randomly selecting a bit 𝑏 ′ in 𝑃 ′’s bit-vector and flipping
it. By doing so, DomGad adds and removes entries from the set of
preserved paths used to compose 𝑃 ′′. This mutation is symmetric,
as each path has the same chance of being selected (or not selected).

DomGad’s algorithm. Algorithm 4 describes DomGad’s sto-
chastic optimization approach. The algorithm takes as input (1) a
program 𝑃 , (2) a set of previously identified paths 𝑃𝐼 , (3) a map
𝑝𝑖𝑚𝑎𝑝 that maps each path 𝑝𝑖 ∈ 𝑃𝐼 to its path probability, (4) a
timeout value 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 , (5) 𝑘𝑟 and 𝑘𝑔, used to compute the objec-
tive score, and (6) 𝑘 , used to compute the density score. Given 𝑃
and a reduced program 𝑃 ′, we define the density score 𝑑 (𝑃, 𝑃 ′) as
𝑓 (𝑃, 𝑃 ′) · 𝑍 , which is equal to 𝑒𝑥𝑝 (𝑘 · O(𝑃, 𝑃 ′)). DomGad does
not have to compute the density value and can instead use the
density score to decide the acceptance of a new sample. This is
because, when computing density ratio, the normalizing factor 𝑍 is
a common factor and can be simplified.

The algorithm starts by generating a program with no paths
(line 1), that is, a program that has an empty body for each defined
function. It then computes scores for this program (lines 2–4) and
initializes 𝑐𝑢𝑟𝑟𝐷𝑆𝑐𝑜𝑟𝑒 , 𝑏𝑒𝑠𝑡𝐷𝑆𝑐𝑜𝑟𝑒 , and 𝑏𝑒𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒 , which repre-
sent the current and highest density scores and the sample holding
the highest score (lines 5–7). The algorithm also converts 𝑃𝐼 into a
list 𝑝𝑖_𝑙𝑖𝑠𝑡 , obtains its size, and creates a bit-vector 𝑏𝑖𝑡𝑣𝑒𝑐 with all
bits set to 0 (lines 9–13).

The algorithm then generates samples iteratively (lines 15–48).
In each iteration, it randomly flips a bit in 𝑏𝑖𝑡𝑣𝑒𝑐 (lines 16–17), com-
putes the set 𝑆 of statements executed along the preserved paths
(lines 18–21), and generates a reduced program 𝑃 ′ (i.e., a sample)
accordingly (line 22). Next, the algorithm computes, for the gen-
erated program, the reduction 𝑟𝑒𝑑 (line 24), generality 𝑔𝑒𝑛 (lines
25-35), and density score 𝑑𝑠𝑐𝑜𝑟𝑒 (line 36) values. Note that, for com-
puting 𝑔𝑒𝑛, it would be insufficient to only consider paths explicitly
selected for composing 𝑃 ′. As we mentioned above, the algorithm
also checks for paths not selected, yet accidentally preserved in 𝑃 ′.

After generating a new sample, the algorithm computes the
density ratio to decide whether to accept the new sample (line 39).
If the sample is accepted, the algorithm updates 𝑐𝑢𝑟𝑟𝐷𝑆𝑐𝑜𝑟𝑒 and,
if needed, 𝑏𝑒𝑠𝑡𝐷𝑆𝑐𝑜𝑟𝑒 and 𝑏𝑒𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒 (lines 42–45). Otherwise, it
reverts the bit flipped (line 47). Finally, it returns 𝑏𝑒𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒 , the
sample with the highest density and objective scores (line 49).

Algorithm 4 DomGad’s stochastic algorithm.
Input: 𝑃 : original program
Input: 𝑃𝐼 : set of identified paths
Input: 𝑝𝑖𝑚𝑎𝑝 : path probability map
Input: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 : timeout value (in hours)
Input: 𝑘𝑟 : weight for computing reduction
Input: 𝑘𝑔: weight for computing objective score
Input: 𝑘 : constant for computing density value
Output: 𝑏𝑒𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒 : resulting debloated program
1: 𝑃′ ← a program with no path preserved
2: 𝑟𝑒𝑑 ← 𝑔𝑒𝑡𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 (𝑃, 𝑃′, 𝑘𝑟 )
3: 𝑔𝑒𝑛 ← 0
4: 𝑑𝑠𝑐𝑜𝑟𝑒 ← 𝑔𝑒𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 (𝑟𝑒𝑑,𝑔𝑒𝑛, 𝑘, 𝑘𝑔)
5: 𝑐𝑢𝑟𝑟𝐷𝑆𝑐𝑜𝑟𝑒 ← 𝑑𝑠𝑐𝑜𝑟𝑒
6: 𝑏𝑒𝑠𝑡𝐷𝑆𝑐𝑜𝑟𝑒 ← 𝑑𝑠𝑐𝑜𝑟𝑒
7: 𝑏𝑒𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒 ← 𝑃′
8:
9: 𝑝𝑖_𝑙𝑖𝑠𝑡 ← 𝑡𝑜𝐿𝑖𝑠𝑡 (𝑃𝐼 )
10: 𝑝𝑖_𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒 ← 𝑝𝑖_𝑙𝑖𝑠𝑡 .𝑠𝑖𝑧𝑒 ()
11: 𝑏𝑖𝑡𝑣𝑒𝑐 ← new int [𝑝𝑖_𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒 ]
12: for int 𝑖 = 0; 𝑖 < 𝑝𝑖_𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒 ; 𝑖 + + do
13: 𝑏𝑖𝑡𝑣𝑒𝑐 [𝑖 ] = 0
14:
15: do

16: 𝑖𝑑𝑥 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 (0, 𝑝𝑖_𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒) ⊲ 𝑖𝑑𝑥 ∈ [0, 𝑝𝑖_𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒)
17: 𝑏𝑖𝑡𝑣𝑒𝑐 [𝑖𝑑𝑥 ] ← 1 − 𝑏𝑖𝑡𝑣𝑒𝑐 [𝑖𝑑𝑥 ] ⊲ Flip a bit
18: 𝑆 ← {} ⊲ A set of statements
19: for int 𝑖 = 0; 𝑖 < 𝑝𝑖_𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒 ; 𝑖 + + do
20: if 𝑏𝑖𝑡𝑣𝑒𝑐 [𝑖 ] == 1 then
21: 𝑆 ← 𝑆 ∪ 𝑔𝑒𝑡𝑆𝑡𝑚𝑡𝑠 (𝑝𝑖_𝑙𝑖𝑠𝑡 .𝑔𝑒𝑡 (𝑖))
22: 𝑃′ ← 𝑔𝑒𝑡𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝑃𝑟𝑜𝑔 (𝑃, 𝑆)
23:
24: 𝑟𝑒𝑑 ← 𝑔𝑒𝑡𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 (𝑃, 𝑃′, 𝑘𝑟 )
25: 𝑔𝑒𝑛 ← 0
26: for int 𝑖 = 0; 𝑖 < 𝑝𝑖_𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒 ; 𝑖 + + do
27: 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

28: if 𝑏𝑖𝑡𝑣𝑒𝑐 [𝑖 ] == 1 then
29: 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ← 𝑡𝑟𝑢𝑒
30: else

31: 𝑆′ ← 𝑔𝑒𝑡𝑆𝑡𝑚𝑡𝑠 (𝑝𝑖_𝑙𝑖𝑠𝑡 .𝑔𝑒𝑡 (𝑖))
32: if 𝑖𝑠𝑆𝑢𝑏𝑠𝑒𝑡𝐸𝑞𝑢𝑎𝑙 (𝑆′, 𝑆) then
33: 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ← 𝑡𝑟𝑢𝑒

34: if 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 then

35: 𝑔𝑒𝑛+ = 𝑝𝑖𝑚𝑎𝑝.𝑔𝑒𝑡 (𝑝𝑖_𝑙𝑖𝑠𝑡 .𝑔𝑒𝑡 (𝑖))
36: 𝑑𝑠𝑐𝑜𝑟𝑒 ← 𝑔𝑒𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 (𝑟𝑒𝑑,𝑔𝑒𝑛, 𝑘, 𝑘𝑔)
37:
38: 𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝑓 𝑎𝑙𝑠𝑒

39: if 𝑟𝑎𝑛𝑑𝑜𝑚 () < 𝑑𝑠𝑐𝑜𝑟𝑒/𝑐𝑢𝑟𝑟𝐷𝑆𝑐𝑜𝑟𝑒 then ⊲ 𝑟𝑎𝑛𝑑𝑜𝑚 () ∈ [0, 1)
40: 𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝑡𝑟𝑢𝑒

41: if 𝑎𝑐𝑐𝑒𝑝𝑡 then

42: 𝑐𝑢𝑟𝑟𝐷𝑆𝑐𝑜𝑟𝑒 ← 𝑑𝑠𝑐𝑜𝑟𝑒
43: if 𝑑𝑠𝑐𝑜𝑟𝑒 > 𝑏𝑒𝑠𝑡𝐷𝑆𝑐𝑜𝑟𝑒 then
44: 𝑏𝑒𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒 ← 𝑃′
45: 𝑏𝑒𝑠𝑡𝐷𝑆𝑐𝑜𝑟𝑒 ← 𝑑𝑠𝑐𝑜𝑟𝑒

46: else

47: 𝑏𝑖𝑡𝑣𝑒𝑐 [𝑖𝑑𝑥 ] ← 1 − 𝑏𝑖𝑡𝑣𝑒𝑐 [𝑖𝑑𝑥 ] ⊲ Revert the bit
48: while 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 is reached
49: return 𝑏𝑒𝑠𝑡𝑆𝑎𝑚𝑝𝑙𝑒

5 EVALUATION

To assess the usefulness of DomGad, we implemented it in a pro-
totype tool and applied it to a benchmark of ten programs. We
compared DomGad to two baselines: Debop, our previous approach
that also performs optimization-based debloating, and Chisel [22],
a state-of-the-art, reduction-oriented technique. Specifically, we
investigated four research questions:

• RQ1: How does DomGad perform in terms of path identifi-
cation and quantification?
• RQ2: How does DomGad perform in terms of stochastic
optimization?
• RQ3: How does DomGad compare with Debop in terms of
the reduction-generality tradeoffs achieved by the debloated
programs they generate?
• RQ4: How does DomGad compare with Chisel in terms of
size and attack-surface reduction?
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Table 2: Benchmark programs used in our evaluation.

Program LOC #Func #Stmt

bzip2-1.0.5 11782 97 6154
chown-8.2 7081 122 3765
date-8.21 9695 78 4228
grep-2.19 22706 315 10977
gzip-1.2.4 8694 91 4049
mkdir-5.2.1 5056 43 1804
rm-8.4 7200 135 3835
sort-8.16 14264 233 7805
tar-1.14 30477 473 13995
uniq-8.16 7020 65 2086

5.1 Implementation Details

We developer our prototype tool using a combination of C++, Java,
and Bash scripts. The tool takes as inputs a program, an input
sampler, and a set of parameters (𝑐 , 𝐵, 𝜖 , 𝛼 , 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 , 𝑘𝑟 , 𝑘𝑔 , and
𝑘), and generates a debloated program. To record paths and the
statements covered in that path, our prototype uses the llvm-cov
tool [37]. We relied on Clang [13] (v.9.0.0) for building the abstract
syntax tree (AST) of a program and used the AST to record the
starting and ending positions of the functions and statements in
the program. The tool produces a reduced program based on these
recorded positions and on the coverage report generated by llvm-
cov. To measure the number of statements in a program, our tool
leverages a utility provided by Chisel [10]. Finally, to compute
attack surface reduction, the tool compiles the program using Clang
andmeasures the number of ROP gadgets in the resulting executable
using the ROPgadget tool [48].

5.2 Experiment Setup

5.2.1 Benchmark Programs. As benchmark, we used the ten Unix
utility programs (the all-in-one-file versions) provided in the bench-
mark repository [11]. We selected these programs because they
have been extensively used for evaluating debloating techniques
in related work [22, 41, 61]. Table 2 shows the statistics of these
programs in terms of size, number of functions, and number of
statements.

5.2.2 Sampler Programs. For each benchmark program, we created
an input sampler based on its usage profile, that is, based on the set
of inputs associated with the program and provided in [11]. The
sampler reflects how the benchmark program is used according
to its usage profile. Specifically, to generate an input, the sampler
randomly selects an option used in the usage profile, where an
option could be an empty option, a single option (e.g., “-c”), or a
combination of individual options (e.g., “-r -f”). We computed the
probability of selecting an option based on its usage frequency. For
example, if an option “-c” was used in seven out of the ten inputs
within a usage profile, the selection probability of the option would
have been 0.7.

These options, or the program in general, may require values or
inputs of a specific type to operate, and the sampler must be able to
provide these values and inputs. When a numeric or enumeration
value is required, the sampler generates a random value from a
pre-defined range of values. For example, since a permission value
is needed for the “-m” option for mkdir-5.2.1, the sampler chooses

a random value between 000 and 777. Similarly, in the case of
program date-8.21, the sampler generates a random date or time
value. When a text file is needed, the sampler produces a random
file that contains 𝑁 lines, where 𝑁 is a random number between
1 and 100, and each line contains 𝑀 ASCII characters, where 𝑀
is also a random number between 1 and 100. When a compressed
file is needed (for bzip2-1.0.5, gzip-1.2.4, and tar-1.14), the sampler
generates a random text file, and then invokes the corresponding
utility to generate its compressed version. Finally, if a directory is
needed, the sampler generates a directory that mirrors the structure
of directories in the usage profile but contains random files.

In addition, some programs require inputs with specific char-
acteristics and relations among them. grep, for instance, is a Unix
utility for identifying patterns within files. The sampler we devel-
oped for grep-2.19, does not generate a random query pattern and
uses instead patterns that appear in the provided usage profile. As
the target file for grep-2.19, the sampler first generates a random
text file. Then, depending on whether the query can be found in
the original input or not, the sampler will either insert the query in
the target file or remove it if present.

In summary, we carefully designed the sampler programs so as
to make sure they simulated how the benchmark programs are
used in their usage profiles. We provide a detailed description of
the sampler programs at [49].

5.2.3 Parameters. DomGad uses a set of parameters for debloating.
For path identification, we set the domain coverage lower bound
to 𝑐 = 0.95, and the confidence parameter 𝐵 to 100 (as suggested
in [51]). With these settings, DomGad would only terminate if it
does not identify any new paths for 𝐾 = 90 subsequent iterations.
We set 10000 as the maximum number of iterations for path identifi-
cation. For path quantification, we set accuracy parameter 𝜖 to 0.03,
and confidence parameter 𝛼 to 0.05. With these settings, DomGad
must sample 𝑛𝑙𝑏 = 8321 inputs to satisfy the error-bounding con-
straint. It is worth noting that there is a tradeoff between accuracy
and efficiency for both path identification and quantification. One
could decrease the value of 𝑐 to sample a smaller number of inputs
needed for path identification, and vice versa. Similarly, one could
increase the values of 𝜖 and 𝛼 to sample less inputs to satisfy the
error-bounding constraint for path quantification, and vice versa.

With the current settings, it took DomGad 42.5 hours to finish
path identification and quantification for all programs. We did not
investigate how sensitive are the debloating results to the values of
𝑐 , 𝜖 , and 𝛼 , but we plan to do it in future work.

When performing stochastic optimization, we used different
values of the two weights used for computing the objective score
(𝑘𝑟 and 𝑘𝑔). Specifically, to study how 𝑘𝑔 affects the debloating
result, we set 𝑘𝑟 to 0.5 and experimented with five values for 𝑘𝑔 : 0.1,
0.3, 0.5, 0.7, and 0.9. Similarly, to study how 𝑘𝑟 affects the results, we
set𝑘𝑔 to 0.5 and experimented with three values for𝑘𝑟 : 0.25, 0.5, and
0.75. For each benchmark program, we therefore ran DomGad for
a total of seven trials. In each trial, DomGad produced a debloated
program, using a timeout of six hours. This resulted in a total of
420 hours of machine time to finish all trials for all programs. To
compute a density score, we followed the approach used in [61]
and set 𝑘 to 50.
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5.2.4 Setup for Debop. We compared DomGad with Debop us-
ing its implementation available at [14]. Unlike DomGad, Debop
is an input-based technique and requires a program and a set of
inputs. To perform a fair comparison, we provided Debop with a
program 𝑃Π that preserves all the paths Π identified by DomGad
(as DomGad would only generate reduced versions of 𝑃Π). Dom-
Gad leverages a set of sampled inputs 𝐼 to quantify each path in Π,
and performs stochastic optimization based on the quantification
result. For comparison, we provided Debop with a set of inputs
𝐼 ′ ⊆ 𝐼 that only contains inputs that exercise paths in Π. We did
not provide Debop with 𝐼 , as there might be inputs in 𝐼 that execute
paths that are not in Π and are not actually used by DomGad for
quantification.

For each input, Debop needs an oracle to decide whether a pro-
gram 𝑃 ′ executes correctly for that input. Therefore, for each sam-
pler 𝐼𝑆 we developed, we also wrote a program that automatically
generates an oracle for every possible input that 𝐼𝑆 generates. The
oracle works by comparing the output of 𝑃 ′ against that of its
original program 𝑃 . Specifically, the oracle checks a program’s exit
value and each output produced by the program, including files and
directories. Specifically, for bzip2-1.0.5, gzip-1.2.4, and tar-1.14, if the
program generates a text file, the oracle directly checks its content.
Otherwise, if the generated file is compressed, the oracle invokes
the corresponding utility to decompress it, and then checks the
decompressed files. Finally, if a directory is generated, the oracle
checks the files it contains. For chown-8.4, the oracle checks the
ownership of files/directories. For rm-8.4, the oracle checks the ex-
istence of files/directories. For mkdir-5.2.1, in addition to checking
the existence of the generated directories, the oracle also checks
their permissions.

Debop assigns to a program that executes correctly for all the
provided inputs generality 1. This is problematic (for comparison),
as such a program would not be considered able to handle all inputs
(in the whole domain) by DomGad. To address this problem, we
slightly modified the implementation of Debop so that it takes as
input a generality factor 𝑔𝑓 ∈ [0, 1]. Then, we provided Debop with
a generality factor that is computed as the generality of 𝑃Π (the
sum of the path probabilities for all the paths in Π). In this way, for
a program 𝑃 ′, the generality score computed by Debop becomes the
product of (i) 𝑔𝑓 and (ii) the number of inputs for which 𝑃 ′ executes
correctly over all provided inputs. We also configured Debop so
that it quantifies reduction in the same way DomGad does.

We applied Debop to the benchmark programs using the same
parameter values for 𝑘𝑟 , 𝑘𝑔 , and 𝑘 that DomGad uses, the same
number of trials, and the same timeout per trial.

5.2.5 Setup for Chisel. Chisel is also input-based and thus re-
quires a set of inputs for debloating. Similar to Debop, for each
benchmark program, we provided Chisel with program 𝑃Π . Be-
cause Chisel is not an optimization-based technique, we did not
provide the set of inputs 𝐼 ′ that Debop uses. Instead, we logged the
exact set of paths Π′′ preserved in the debloated program generated
by DomGad, and obtained the set of inputs 𝐼 ′′ ⊆ 𝐼 used for quanti-
fying paths in Π′′. Because 𝐼 ′′ corresponds to the set of inputs that
can be correctly handled by the programs debloated by DomGad,
we provided Chisel with 𝐼 ′′. For each input in 𝐼 ′′, we generated an
oracle using the same approach described in Section 5.2.4. For each

Table 3: Results of path identification and quantification.

Program

Path Identification Path Quantification

#Paths MaxK Time (Hour) #Inputs PathProb Time (Hour)

bzip2-1.0.5 729 90 3.2 8321 0.938 2.6
chown-8.2 6 90 <0.1 8321 1 2.6
date-8.21 401 90 1.5 8321 0.949 2.7
grep-2.19 1290 77 6.7 8321 0.935 2.9
gzip-1.2.4 373 90 1.1 8321 0.929 2.5
mkdir-5.2.1 361 90 1.3 8321 0.952 2.3
rm-8.4 252 90 0.5 8321 0.918 2.5
sort-8.16 276 90 1.2 8321 0.96 2.8
tar-1.14 20 90 0.1 8321 0.999 3.6
uniq-8.16 31 90 0.1 8321 0.991 2.3

Table 4: Reduction (Red), generality (Gen), objective score

(OScore) size reduction (SizeRed), and attack surface reduc-

tion (AttkSurfRed) of the debloated programs generated by

DomGad and Debop (averaged over all programs).

kr kg

Red Gen OScore

DomGad Debop DomGad Debop DomGad Debop

0.5 0.1 0.82 0.5 0.06 0.93 0.74 0.54
0.5 0.3 0.7 0.5 0.56 0.95 0.66 0.63
0.5 0.5 0.5 0.49 0.95 0.96 0.72 0.72
0.5 0.7 0.49 0.5 0.96 0.96 0.82 0.82
0.5 0.9 0.49 0.49 0.96 0.96 0.91 0.91

kr kg

SizeRed AttkSurfRed Red

DomGad Debop DomGad Debop DomGad Debop

0.25 0.5 0.67 0.67 0.31 0.31 0.58 0.58
0.5 0.5 0.67 0.67 0.33 0.31 0.5 0.49
0.75 0.5 0.67 0.67 0.32 0.32 0.41 0.4

Table 5: Size reduction (SizeRed), attack surface reduction

(AttkSurfRed), and reduction (Red) of the debloated pro-

grams generated by DomGad and Chisel (averaged over all

programs).

kr kg

SizeRed AttkSurfRed Red

DomGad Chisel DomGad Chisel DomGad Chisel

0.5 0.1 0.99 0.92 0.64 0.69 0.82 0.81
0.5 0.3 0.87 0.87 0.52 0.67 0.7 0.77
0.5 0.5 0.67 0.68 0.33 0.43 0.5 0.56
0.5 0.7 0.67 0.68 0.3 0.44 0.49 0.56
0.5 0.9 0.67 0.68 0.3 0.44 0.49 0.56
0.25 0.5 0.67 0.68 0.31 0.43 0.58 0.62
0.5 0.5 0.67 0.68 0.33 0.43 0.5 0.56
0.75 0.5 0.67 0.68 0.32 0.44 0.41 0.49

trial performed by DomGad, we obtained the corresponding pro-
gram and inputs and ran Chisel on those, using the same timeout
we used for DomGad.

5.2.6 Experiment Environment. We ran all of the experiments on a
machine with a 260GB RAM, 32 AMD-Opteron 1.4GHz processors,
and running Ubuntu-18.04.

5.3 Results

5.3.1 RQ1: DomGad’s performance in terms of path identification

and quantification. Table 3 presents a summary of DomGad’s path
identification and quantification results. From left to right, the table
shows the benchmark program (Program), the number of paths
identified (#Paths), the largest 𝐾 achieved during path identifica-
tion (MaxK) (this is the largest number of subsequent iterations
for which no new paths were identified), the time taken for path
identification (Time (Hour), 4-th column), the number of sampled
inputs used for path quantification (#Inputs), the sum of path prob-
abilities for the paths identified (PathProb), and the time taken for
path quantification (Time (Hour), last column).

The results show that, for all programs but grep-2.19, DomGad
was able to identify a set of paths Π that achieved 𝑀𝑎𝑥𝐾 = 90,
thus satisfying the domain coverage constraint specified by the

231



Subdomain-Based Generality-Aware Debloating ASE ’20, September 21–25, 2020, Virtual Event, Australia

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 27 54 81 10
8

13
5

16
2

18
9

21
6

24
3

27
0

29
7

32
4

35
1

37
8

40
5

43
2

45
9

48
6

51
3

54
0

56
7

59
4

62
1

64
8

67
5

70
2

bzip2-1.0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5

chown-8.2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

25
5

27
0

28
5

30
0

31
5

33
0

34
5

36
0

37
5

39
0

date-8.21

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 47 94 14
1

18
8

23
5

28
2

32
9

37
6

42
3

47
0

51
7

56
4

61
1

65
8

70
5

75
2

79
9

84
6

89
3

94
0

98
7

10
34

10
81

11
28

11
75

12
22

12
69

grep-2.19

0

0.05

0.1

0.15

0.2

0.25

0 14 28 42 56 70 84 98 11
2

12
6

14
0

15
4

16
8

18
2

19
6

21
0

22
4

23
8

25
2

26
6

28
0

29
4

30
8

32
2

33
6

35
0

36
4

gzip-1.2.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

16
9

18
2

19
5

20
8

22
1

23
4

24
7

26
0

27
3

28
6

29
9

31
2

32
5

33
8

35
1

mkdir-5.2.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

20
7

21
6

22
5

23
4

24
3

rm-8.4

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

sort-8.16

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

tar-1.14

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

uniq-8.16

Figure 3: Path probability.

lower bound 𝑐 = 0.95 and the confidence parameter 𝐵 = 100. This
provides initial evidence that our approach is feasible, and that it is
often possible to identify a finite number of paths to achieve a high
coverage of the domain (as modeled by the input sampler).

Column PathProb shows the sum of the probabilities for the paths
in Π. For all programs, this sum is higher than 0.9. For grep-2.19,
in particular, although set Π does not satisfy the domain coverage
constraint, the estimated path probability reaches 0.935, which is
only slightly lower than 0.95. For certain programs (e.g., bzip2-1.0.5),
although Π satisfies the domain coverage constraint, the estimated
probability is still lower than 0.95. This can happen, as the path
probability for 𝜋 ∈ Π is estimated, and the sum could therefore be
either slightly lower or slightly higher (than 0.95). Nevertheless,
the average path probability over all benchmark programs is 0.957,
which is fairly close to 0.95 and which indicates that DomGad’s
quantification is effective.

Figure 3 presents the distribution of path probabilities for the
paths identified by DomGad. For many of the programs considered,

we can observe a small number of “hot paths” whose probabilities
are much higher than those of other paths. This implies that it
should be possible to produce, by preserving a small number of
suitable paths, debloated programs that achieve good tradeoffs
between reduction and generality.

5.3.2 RQ2: DomGad’s performance in terms of stochastic optimiza-

tion. Table 4 shows a summary of DomGad’s stochastic optimiza-
tion results. (Full results are available at on our companion website,
at https://sites.google.com/view/domgad/.) The table shows the
scores of the debloated programs generated by DomGad for dif-
ferent 𝑘𝑟 and 𝑘𝑔 values, averaged over all programs. Specifically,
for 𝑘𝑟 = 0.5, and 𝑘𝑔 ranging from 0.1 to 0.9, the table shows, from
left to right, reduction (Red), generality (Gen), and objective score
(OScore) for the programs generated by DomGad (and Debop). Sim-
ilarly, for 𝑘𝑔 = 0.5 and 𝑘𝑟 ranging from 0.25 to 0.75, the table shows,
from left to right, size reduction (SizeRed), attack surface reduction
(AttkSurfRed), and reduction (Red) for the programs.
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When 𝑘𝑟 and 𝑘𝑔 are both 0.5 (i.e., equal weights for size reduction
and attack surface reduction, and equal weights for reduction and
generality), DomGad produced a debloated program that achieves
(on average) 50% reduction (67% size reduction and 33% attack
surface reduction) and 95% generality. This result indicates that
DomGad is able to generate, by preserving paths that achieve a high
domain coverage, a reduced program that is significantly smaller
(in size and attack surface), yet is highly general.

With 𝑘𝑟 = 0.5 and 𝑘𝑔 going from 0.1 to 0.9 (i.e., with increasingly
higher weight given to generality and increasingly lower weight
given to reduction), DomGad produced debloated programs with
increasing generality (from 0.06 to 0.96) and decreasing reduction
(from 0.82 to 0.49). This confirms that DomGad is indeed able to
explore the space of solutions and produce debloated programs
with different tradeoffs.

When 𝑘𝑔 = 0.5, DomGad achieves a high generality (0.95), but
when 𝑘𝑔 changes from 0.5 to 0.9, the generality only increases
slightly (0.01).When𝑘𝑔 = 0.5, we observe that, for seven benchmark
programs (all but date-8.21, grep-2.19, and gzip-1.2.4), the debloated
programs preserve all the paths identified. The reason for this result
is that DomGad, in its first step, successfully identified a small set
of paths Π that achieve high domain coverage. Even a reduced
program that preserves all these paths is still much smaller than the
original program, achieving a 0.49 reduction on average. Therefore,
when reduction is not heavily weighed, DomGad tends to produce
a reduced program that preserves most of the paths in Π.

When 𝑘𝑔 is small (i.e., reduction is heavily weighed), DomGad
tends to produce a debloated program that preserves only a few
“hot” paths, so as to reduce code as much as possible. As an example,
when 𝑘𝑔 = 0.1, DomGad produced a debloated program for mkdir
that preserves only three paths that have high probability (i.e.,
Nos. 0, 1, and 319 in Figure 3), achieving a reduction of 0.67 and a
generality of 0.55.

Considering Table 4, we can observe that, when 𝑘𝑔 is 0.5 and
𝑘𝑟 ranges from 0.25 to 0.75, DomGad does not indeed produce de-
bloated programs with different tradeoffs between size reduction
and attack-surface reduction. As we previously discussed, when
𝑘𝑔 is not extremely small, DomGad tends to produce a program
that preserves all the paths, and therefore does not explore differ-
ent reduction-generality tradeoffs. In future work, we will investi-
gate how these tradeoffs vary using different values of 𝑘𝑔 , possibly
smaller than 0.5.

5.3.3 RQ3: Comparison between DomGad and Debop. Table 4 also
presents Debop’s results. As the table shows, Debop produced de-
bloated programs with almost identical scores for reduction (about
0.5) and generality (about 0.95) when 𝑘𝑔 varied from 0.1 to 0.9. In
these cases, therefore, Debop failed to produce debloated programs
with different tradeoffs between reduction and generality.

The reason why Debop only produced programs with high gen-
erality (even when 𝑘𝑔 is as low as 0.1) is that its debloating process
starts with a program that handles all the provided inputs, and thus
preserves all the paths identified by DomGad. We observed that
Debop’s stochastic search is not effective at exploring the search
space. The number of iterations that Debop performs (on average)
for its stochastic search is 29, which is insufficient for an effective
exploration.

In contrast, in the same amount of time (i.e., six hours), Dom-
Gad performed over 6000 iterations. Note that, when 𝑘𝑔 was not
extremely low (e.g., 𝑘𝑔 = 0.5), Debop produced debloated programs
with scores similar to those generated by DomGad. This result
is due to the fact that Debop happens to start with the programs
that DomGad eventually identifies as optimally reduced (i.e., the
programs with all paths preserved). When 𝑘𝑔 is low (i.e., less than
0.5), however, Debop could only generate debloated programs with
lower objective scores.

We believe that there are two main reasons why Debop has lim-
ited effectiveness. First, its search space is extremely large. Debop
reduces a program at the statement level, and the average number
of statements in its search space is 1105, which is larger than the
number of paths in DomGad’s search space (374). Second, Debop,
as an input-based technique, has to run the entire set of inputs to
evaluate generality for every reduced program it generates, which
is expensive.

It is also worth noting that we provided Debop with a reduced
program that preserves all the paths identified by DomGad. Al-
though this allows for a fair comparison between DomGad and
Debop, it also makes Debop’s debloating job easier, as Debop starts
from the partially debloated program that DomGad generates.

5.3.4 RQ4: Comparison between DomGad and Chisel. Table 5
presents Chisel’s result. As we stated above, because Chisel is a
reduction-oriented technique, we provided Chisel with the exact
inputs that DomGad’s programs could correctly handle and only
compared the two techniques in terms of reduction.

Our results show that DomGad and Chisel produce debloated
programs with similar size-reduction scores, but DomGad achieves
slightly higher size reduction on average. This implies that, even
using an aggressive approach that focuses only on reduction, Chisel
is not able to outperform DomGad and produce debloated programs
with a smaller size.

In terms of attack-surface reduction, however, DomGad does
not perform as well as Chisel. The reason for this is that DomGad
uses a path-based approach and only eliminates statements within
function bodies. Conversely, in addition to removing statements,
Chisel also reduces global variables and function declarations. This
helps Chisel produce a reduced program with a smaller binary
size, and hence a smaller attack surface. Based on these findings,
in future work we plan to investigate code-removal techniques
for non-executable statements, which should improve DomGad’s
size-reduction performance.

It is worth noting that, since Chisel is a reduction-oriented
technique, we provided it with the inputs that DomGad could
correctly handle (similar to what we did for Debop). On the one
hand, this allowed for a fairer comparison between Chisel and
DomGad. On the other hand, however, it basically gave Chisel the
advantage of operating on an already partially-debloated program.

5.4 Threats to Validity

Like all evaluations, our empirical assessment of DomGad could
suffer from issues of internal and external validity. To account for
possible threats to internal validity, we thoroughly tested and spot-
checked our code. DomGad relies on an input sampler for path
identification and quantification, which we developed (and which
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took about a day of work). To reduce bias, we designed the sampler
so that they simulate how the benchmark program is used, accord-
ing to its usage profile. For the two techniques we used as baseline,
we leveraged the implementation provided by their authors [10, 14].
As for threats to external validity, we evaluated the approaches on
ten Unix utility programs, and our results may not generalize to
more complex programs (e.g., programs involving user interactions,
database connections, and network communications) for which (1)
developing effective samplers would be more challenging and (2)
path identification and quantification and stochastic optimization
would be more expensive and difficult. As we will discuss in Sec-
tion 7, we envision a number of ways in which we could improve
DomGad to address possible issues that may arise when applying
it to larger and more complex benchmarks.

6 RELATEDWORK

Program debloating. DomGad is related to a set of reduction-
oriented techniques that rely on a usage profile for debloating [22,
41, 45, 55, 57]. TRIMMER [55] performs aggressive compiler op-
timization for code reduction. OCCAM [38] achieves reduction
through partial evaluation [28]. C-Reduce [45], Perses [57], and
Chisel [22] are reduction techniques based on delta-debugging [66].
J-Reduce [20] improves delta-debugging by leveraging dependency
information for effective reduction. The reduction approach adopted
by Razor [41] is based on code coverage, inference, and binary
rewriting. Unlike all these techniques, DomGad performs subdomain-
based debloating and produces reduced programs by focusing on
subdomains, rather than specific inputs. Moreover, unlike most of
these techniques, DomGad is not purely reduction-oriented; it also
accounts for generality while debloating and performs stochastic
optimization to strike a balance between reduction and general-
ity. Debop [61] is a technique that we developed in previous work
and that also performs optimization for debloating. Unlike Dom-
Gad, however, Debop is input-based and operates at the statement,
rather than path, level. As our empirical results show, this nega-
tively affects Debop’s performance in terms of both reduction and
efficiency. DomGad is also related to techniques that perform static
analysis to remove dead or unused code [1, 24, 26, 27, 29, 42] and
techniques that perform reduction either for specific applications
(e.g., containers [44] and web applications [3]) or for special pur-
poses (e.g., safety checking [15]). More broadly, DomGad is related
to approaches for detecting bloat [4, 62, 63], identifying unneces-
sary code [21], and identifying code of interest through program
slicing [60]. It would be interesting to investigate whether and how
DomGad could be combined with some of these techniques, and in
particular slicing.

Model counting and probabilistic analysis. Because Dom-
Gad performs statistical sampling for path identification and quan-
tification, it is related to model counting techniques [2, 7, 32], which
aim at quantifying the number of models that satisfy a given for-
mula. For similar reasons, it is also related to approaches for prob-
abilistic software analysis [5, 16, 51], which aim to quantify like-
lihood of the occurrence of certain probabilistic events. Finally,
DomGad is related to statistical model checking techniques [35],
which aim at verifying probabilistic properties through statistical
methods. For path quantification, DomGad performs a hit-or-miss

sampling method. Like the previous set of techniques, these ap-
proaches are mainly orthogonal to DomGad and may be interesting
to investigate for identifying possible synergies.

MCMC and optimization. DomGad uses an MCMC-based ap-
proach for stochastic optimization, so it is tangentially related to
techniques that leverage MCMC to tackle other problems, such as
optimization [52], bug finding [8, 33], model-based GUI testing [56],
and program obfuscation [36]. Finally, DomGad is loosely related
to optimization techniques for resource adaptation [12], energy re-
duction [53], program repair [34], and, more broadly, for software
improvement [40].

7 CONCLUSION AND FUTUREWORK

Existing debloating techniques are prone to producing programs
that are overfitted to the specific user profile (i.e., set of inputs)
used to drive the debloating process and are therefore likely to fail
for most other inputs. To address this problem, we propose Dom-
Gad, a subdomain-based, generality-aware debloating technique.
Unlike most existing debloating approaches, which only consider
program-size reduction, DomGad also accounts for generality—a
program’s ability to correctly handle inputs in its whole domain.
To do so, DomGad focuses on preserving specific paths, rather than
individual statements, within the original program, thus producing
reduced programs that are guaranteed to behave correctly for the
input subdomains characterized by these paths. In order to strike
a balance between reduction and generality, DomGad performs
stochastic optimization using an objective function that combines
these two conflicting measures and can achieve close-to-optimal
tradeoffs. Our evaluation of DomGad, performed on a benchmark
of ten Unix utility programs, shows that our technique can produce
debloated programs that achieve significant code reductions (50%
on average), while preserving high generality (95% on average).
Our results also show that DomGad performs well when compared
against two state-of-the-art debloating techniques.

In future work, we will first extend our evaluation by (1) applying
DomGad to a broader set of programs, to assess whether our cur-
rent results generalize, and (2) performing a user study, to measure
the value of generality in a more realistic context. Second, we will
investigate ways to improve the efficiency of path identification
and quantification. In particular, we will consider approaches such
as stratified sampling [47] and sequential sampling [58], as well as
study the possibility of performing path identification and quan-
tification simultaneously based on shared input samples. Third, we
will consider other stochastic approaches, such as those based on
Gibbs Sampling [17], to improve our optimization results. Finally,
we will research ways to infer the input distribution of a program,
possibly based on a usage profile, and build input samplers automat-
ically. To do this, we will consider approaches based on probabilistic
program synthesis [39], probability density estimation [59], distri-
bution estimation [30], and deep generative models [43, 46].
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