
A Demonstration of Simultaneous Execution and 
Editing in a Development Environment 

Steven P. Reiss and Qi Xin

Department of Computer Science
Brown University

Providence, RI 02912, USA
{spr,qx5}@cs.brown.edu

Abstract—We introduce a tool within the Code Bubbles
development environment that allows for continuous execution
as the programmer edits. The tool, SEEDE, shows both the
intermediate and final results of execution in terms of variables,
control flow, output, and graphics. These results are updated as
the user edits. The user can explore the execution to find or fix
bugs or use the intermediate values to help write appropriate
code. A demonstration video is available at https://www.you-
tube.com/watch?v=GpibSxX3Wlw.

Index Terms—Continuous execution, integrated develop-
ment environments, debugging, live coding.

I.  MOTIVATION

Programmers often think in concrete terms while writing
and debugging more abstract code. They start with an example
and write code that handles that example, generalizing the
code as they go. They debug with a particular example in
mind. The ability to see intermediate results and understand
and check code as it is written is central to spreadsheet pro-
gramming and is used in interactive environments such as
MATLAB and in dynamic languages such as Smalltalk or
Python. For example, Sharp [28] notes that for Smalltalk, “A
useful technique for writing new code is to write most of the
code in the Debugger”. Bret Victor claims this type of live
coding is the preferred way to code [33]. Programmers can do
this to a very limited extent with today’s traditional Java pro-
gramming environments using live update, the ability to
reload a class and continue execution. 

Our prototype tool, SEEDE, provides the ability to see
immediately the effect of code changes on execution in a Java
environment for real programs and a wide range of different
edits, essentially providing continuous execution. It does this
within the Code Bubbles programming environment, letting
the programmer start a new session at any breakpoint and
showing the updated execution as the programmer edits. It
also lets the programmer select a test case and view the results
of executing it. 

A system that does continuous execution while editing
needs to meet certain requirements. These include:

• Performance. The evaluation needs to be fast enough
to be run potentially on each keystroke and to provide
feedback within seconds. If feedback is slower, it can
either confuse the programmer (by showing older val-
ues) or cause unnecessary delays.

• Non-obtrusive. Execution feedback should not require
substantial work on the part of the programmer. Cur-
rently, to use Java live update, programmers need to
save error-free code and then either step or continue
from wherever the save placed execution (which
might be the start of the method or the start of some
previous method) up to the point where they were
editing. As a first approximation, we wanted to show
the new values at about the same point without requir-
ing any extra work by the programmer.

• Idempotent. Continuous execution should not actually
change any values in the execution or the external
environment. Any such changes would make running
the code multiple times problematic. For example, a
Java method that starts with or contains the code:

if (!done.add(input)) return;
can only be executed once since the next execution
would just return. Java live update does not work in
these cases. 

• Error Tolerant. The intermediate code created by the
user will contain both syntactic errors and semantic
faults. Note that, especially when creating code, there
are likely to be errors later in the method even while
the code up to the point of interest (where the user is
editing) is correct. Continuous execution must be able
to work in such an environment, providing output at
least up to the first error.

• Complete. The system needs to be able to handle a
large fraction of the underlying language. This means
being able to handle files, graphics, as well as all the
routines that involve native code. It also means han-
dling a wide variety of edits.

Our approach is based on three insights into how to build a
practical continuous execution environment. The first is that it
is generally sufficient to consider only the execution of a
single method within an execution. If SEEDE is used for
writing code, then the method to be written should be the
focus of attention. If the system is used for debugging, then
the user is generally looking at a particular method (for
example a unit test case). Concentrating on a particular
method rather than the full execution makes the notion of
interpreting and saving all values practical. 

The second insight is that the execution should be trig-
gered from a breakpoint in an actual run. The environment
needed to run a method (i.e. all the associated data structures,

978-1-5386-2684-9/17/$31.00 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Tool Demonstrations

895
Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:21:52 UTC from IEEE Xplore.  Restrictions apply. 



current values, etc.) can be large and complex. Associating a
SEEDE run with a debugger session lets SEEDE query the
debugger to access the current environment, something that
could be difficult for the user to manually specify.

The third insight is that the system needs to convey the
complete execution including all intermediate results and
make it easy for the programmer to navigate within these
results. This is primarily for debugging where the programmer
will need to follow the execution and understand where and
when problems occurred, but is also useful in writing new
code. 

Our approach operates by combining three interpreters
into a single system. This is outlined in Section IV. It includes
a viewer as part of Code Bubbles that is automatically updated
as edits occur. This can be seen in the example shown in
Section III. Limitations of the approach are discussed in
Section V. We are currently working on a formal evaluation of
the system as described in Section VI.

II.  RELATED WORK

The idea of providing immediate execution feedback while
coding was central to spreadsheet programming introduced by
VisiCalc. The idea was picked up for procedural programming
by VisiProg [9], and more recently in the EG extension to
Eclipse [5]. These are both illustrated on simple programs and
do not scale to real systems nor do they address the much
more complex problems posed by real systems with complex
data structures, external methods, and concurrency. Victor in
his talk on live coding demonstrated a sample framework and
challenged the audience to create a real one [33]. A more
extreme version of using examples to help coding can be seen
in the various programming-by-example systems that have
been developed over the years [6,26,31]. The approach is also
being used effectively for database interactions using continu-
ous queries [1] and in interactive data exploration tools.

There have been several studies on how programmers
debug and on what tools and techniques might be helpful
[18,19,34]. These tend to show that the type of information
and assistance provided by SEEDE can be helpful.

Since many of the examples cited for continuous execution
are effectively test cases, this work is also related to early
efforts to integrate testing with code writing as in Tinker [12],
and more recent efforts involving continuous testing [27]. The
work is also related to incremental execution [13,23] and con-
tinuous and incremental program analysis [2,14,22,36]. 

Java, and hence various Java programming environments,
support live update of compiled code [16]. This lets the pro-
grammer effectively write code while debugging using the full
capabilities of the debugger to examine program state and see
the effect of the changes. This facility can be helpful but is
also very limited. 

One of our goals is to provide an implementation frame-
work that can provide the benefits of live update without the
limitations. Java live update requires the programmer to save
the edited code (without errors) and then re-execute the
current function, possibly stepping through the execution to

get to the appropriate point of interest. Our approach tracks
the current position in the execution and automatically
restores it after an edit. Live update fails completely under
many common circumstances including adding or removing a
field or method, changing method or field signatures, recur-
sive executions, changes to data structures, changing declared
constant values, or compiler errors. Our approach handles all
of these, either automatically or with minor user intervention
(for example when a new field needs a non-default value for
existing objects). Live update is not idempotent, so code in the
method that changes the environment cannot be cleanly reexe-
cuted. Again, our approach of executing outside the original
environment handles this cleanly. Live update does not handle
external I/O, causing multiple occurrences of output and
requiring the user to reenter input each time. We address these
correctly for the terminal and files. Live update also has prob-
lems with synchronization. since doing live update while
holding a lock does not release the lock. With our approach
locks are only maintained within the simulation, not in the
original program. 

A number of systems over the years have been capable of
showing a full execution and letting the user move backward
or forward in time within that execution. EXDAMS was
perhaps the earliest example [3]. Early graphical environ-
ments such as PECAN let the user step either forward or back-
ward [23]. The algorithm animation system BALSA provided
a time slider similar to the one we offer [4]. Among the many
more recent debuggers that include similar features are
TotalView [7], Elm’s time-traveling debugger [17], the Trace-
Oriented Debugger [20] and others. Ko’s Whyline provided
similar capabilities in a question-answering framework [11].

Dynamic updating has been used for maintaining long-
running applications. A number of techniques have been
developed that take updates and modify the existing system to
use the new code [15,30,32]. These require the programmer to
identify safe points and concentrate on migrating object
implementations. While some of these technologies are useful,
most of it is too heavy-weight to be used continually while the
programmer is editing. Dynamic object updating has also been
at the center of schema updates for object-oriented database
systems [29]. Our approach uses appropriate techniques from
these system to simulate object migration where necessary.

Sandboxing of files is used extensively for providing secu-
rity to applications that might be unsafe and served as a moti-
vation and guideline for modeling external events in our
framework [8,10,35].

III.  USE

The Code Bubbles tutorial program [44] is a simulation of
the Romp toy [39]. The tutorial includes several tasks involv-
ing fixing the display output, notably to change the color of
the magnets and to center the +/- output on the magnet cor-
rectly. To use SEEDE on the tutorial example, we start by
setting a breakpoint at the start of the drawing routine for the
board and then start a debugging run up to that breakpoint.

896
Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:21:52 UTC from IEEE Xplore.  Restrictions apply. 



(The breakpoint can be at any point in the method as long as
the method is idempotent up to that point.) Then we right click
to bring up the default pop-up menu, and select “Start Contin-
uous Execution”.

This creates the uninitialized output display bubble shown
in Figure 1a. and starts the continuous execution process.
Selecting continuous execution for a test case does this all
automatically for that test case, creating a launch, setting a
breakpoint, running the code, and then starting SEEDE.

SEEDE monitors changes to all editors in the same
working set as the SEEDE bubble. If the user opens new edi-
tors, they are monitored as well. Other code is interpreted in
its original state from byte code. Continuous execution on
edits is triggered automatically by messages from Code
Bubbles that indicate edits. The display only shows methods
from the set of editors that are available. Other calls, for exam-
ple, to library routines, are hidden.

The first execution can take significant time since values
need to be loaded from the running process and binary files
need to be loaded from the class path. Both of these are cached
by the SEEDE back end so that subsequent runs are faster.
(The actual performance depends on a variety of factors such
as the amount of data that is retrieved, the amount of data
being passed back to the front end, and the number of instruc-
tions executed. In this case, the time is about 5 seconds.) Once
the initial execution has completed, the system populates the
various components of the continuous execution bubble with
the resultant values as shown in Figure 1b. 

The default view provided by the evaluation bubble is a
tree containing the variables and their values that were com-
puted during the simulated execution. For objects and arrays,
the user can expand the tree to see the sub-values. The vari-
ables are displayed one frame (method) at a time. The scroll
bar at the bottom of the variable display lets the user scroll
over the execution by time. Green areas in the scroll bar repre-
sent code in the current method; gray areas represent code in
called methods. As the user scrolls, the variable values change
to reflect their values at that point of the execution. A special
variable, *LINE*, shows the current line number at that point.
This line is also highlighted in any editor that is open that
includes the method. In addition, hovering over a variable in
the open editor will show the history of values of that variable
up to the current time. This can be seen in Figure 1j.

At the upper right of the window, the system displays the
execution status. This can be PENDING (waiting for an exe-
cution to complete), RETURN (routine successfully returned),
COMPILER_ERROR (execution stopped with a compiler
error), EXCEPTION (execution stopped with an exception),
ERROR (a problem in SEEDE, typically a call to a native
method), or TIMEOUT (execution stopped because it was
taking too long, e.g. with an infinite loop). 

In addition to the variable window, the SEEDE display can
show a graph of the lines executed (Figure 1c) or the call tree
or graph (Figure 1d). The call tree can also be displayed as a
linear view of the stack over time (Figure 1g). The user can

select a value and ask for the data dependence graph for that
value. The result is a display of the values leading to it
(Figure 1h). In addition, if the program does any file output,
the result is shown in an output panel (Figure 1i).

Experience using SEEDE demonstrated the importance of
being able to navigate over time to understand the overall exe-
cution, especially when using the tool for debugging. As a
result, we have added a variety of navigation options. One can
right click on the time scroll bar to go to an inner context. One
can go to the next or previous call or the next or previous line.
One can click on a value in the call tree or the stack view to
see that particular instantiation. One can select a variable and
go to the context where it was written. In addition, the call
graph, stack, and data dependence views provide navigation
options.

In the example because the breakpoint was set at the start
of the paint routine, the continuous execution bubble includes
a graphics panel showing the window output as computed by
interpreter in Figure 1e. This is generated automatically by
SEEDE once it detects that the routine being interpreted is a
painting routine. Users can also point to other variables that
reflect graphical components and request a drawing window
for those as well.

At this point, we can attempt to edit the code and see the
result. We first bring up the drawMagnet routine in a separate
bubble and then change the color setting for drawOval from
Color.green to Color.red. In under a second the graphical
output view updates to reflect the change. Next we try center-
ing the + or  - over the magnet by changing the position passed
to drawString. After each change, we see the result and can
quickly settle the proper change to the coordinates. The final
result is shown in Figure 1f. 

IV.  IMPLEMENTATION OVERVIEW

SEEDE runs as a separate process, talking to both the front
end application and to Code Bubbles’ Eclipse-based back end
through the Code Bubbles messaging interface [24] as shown
in Figure 2, It takes requests from the application and sends
execution updates back to it as they become available. It uses
the back end to query the value of variables, to understand the
Java environment, and to detect changes both to the execution
and to files being edited.

The actual system has several major components. First,
there is a value cache. This holds the value of any variable that
is accessed by the code that is being run. Moreover, it tracks
those values over time, so that it actually stores all the values

ECLIPSE PLUGIN

CODE BUBBLES BICEX

SEEDE

Controller Interpreter

 Modeler

Value Cache

Fig. 2. Overview of the SEEDE architecture. 

File Manager

897
Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:21:52 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Views of the continuous execution display bubble. 

a) Initial view before initialization b) Variable view showing time slider and values

c) Graph of line-number based execution d) Call graph view of execution

e) Initial graphical output window f) Graphical output after editing

g) Stack view h) Data view showing variable dependencies

i) File output view j) Editor view showing highlighted line and tool tips

898
Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:21:52 UTC from IEEE Xplore.  Restrictions apply. 



that were saved in that variable with a clock indicating when
the changes occurred. The cache lets the system access
memory at any point in the execution. This structure, while
created in the interpreter, is duplicated for variables that are
displayed by the front end, allowing the user to see their
values over time. 

The second component is a file manager responsible for
tracking the current state of all active files and building
resolved abstract syntax trees for each execution environment
as the files change. 

The third component is a combination of three interpreters
that work off the same value base and the same global clock.
The first is an interpreter for abstract syntax trees that is used
for code that the user can change. The second is an interpreter
for byte codes that is used for library methods as well as parts
of the system which are not being edited. The third is an inter-
preter for native code. This simulates many of the Java library
methods that use native code by executing equivalent code in
the interpreter or by invoking routines in the debugged pro-
cess. Strings are handled by this interpreter for efficiency.

The fourth component of SEEDE is a set of output models
that reflect the effect of the code on the external environment.
The current implementation includes two basic models. One
handles graphical output, maintaining the set of graphics com-
mands that are executed for a given window over time. This
allows the front end to show the effect of changes on graphical
output, something that cannot be done using Java live update.
The second is a model of files and the file system. This model
essentially provides a shadow file system where the applica-
tion can read and write without affecting actual files or the
environment. Outputs are recorded by time and passed to the
front end for appropriate display. The third is a synchroniza-
tion model that handles locking between threads assuming that
all the threads are being interpreted. 

The final component is the controller. This understands the
debugger session that the user is evaluating from, obtains and
caches values from that session for use by the interpreters,
tracks multiple threads, handles stopping and rerunning exe-
cution when the user makes changes in the editor, handles any
interactions between the front and back end (i.e. requests for
user console input made by the code or requests to display the
result of drawing a particular window after the code has exe-
cuted), and passes back complete execution information when
executions have finished.

V.  LIMITATIONS

Since the code is being interpreted, and being interpreted
potentially on each keystroke, performance of the interpreter
can be a major concern. However, since the system is targeted
toward developing and debugging a single routine at a particu-
lar point in the program, the amount of interpretation may not
be that great. Currently we are processing about 150,000 vari-
able updates a second (the interpreter clock ticks each time a
value is written). For the examples we have been looking at,
response, other than the initial run, has not been a problem.

The second limitation involves determining what the
system can and cannot do. There are obvious limits in terms of
the interfacing with the outside world when the interpreter is
supposed to ensure that nothing external is changed. For
example, using sockets to communicate with an external
program is problematic. Database access is not handled but
could be added with some caveats. Other limits are based on
the current prototype implementation. For example, we do not
handle all possible file system changes. 

Handling synchronization and multiple threads is compli-
cated and SEEDE does not necessarily do it correctly. The
problems arise because some of the threads that need to be
synchronized might not be simulated. It is difficult to synchro-
nized running threads with the threads being simulated or to
detect lock changes in the running threads and propagate them
to the threads being simulated. Moreover, the notion of
caching values from the running program only works if those
values are static. 

Other limitations involve what edits can and cannot be
supported by the system. Some, such as deleting the routine
being interpreted, are difficult to accommodate. Others, such
as adding new methods are relatively easy. The interesting
ones involve changes that affect the environment before the
call. For example, adding a new field to a class requires all
objects of that class to have that field and for that field to have
a value for those objects. Our current approach handles this
but requires either a default or user defined value to be used
for all such instances. 

VI.  PROPOSED EVALUATIONS

While we originally developed SEEDE to assist in writing
new code, we have also noted its potential for debugging. We
are currently starting a user study to look at two hypotheses:

• SEEDE helps programmers when writing new code.
• SEEDE can make debugging fast and accurate.
Our user study will look at these two questions. After

instructing the participants on the use of Code Bubbles and
SEEDE, we will have them do both a debugging and a code
writing task. We are considering standard debugging tasks
(e.g. from Parnin and Orso [18]) and creation tasks such as the
binary search example of Victor [33]. For each task we will
have participants do the task using Code Bubbles with and
without SEEDE. We will measure time and accuracy of the
solutions. We will also get the user’s opinions on the utility
and appropriateness of the tool.

VII.  AVAILABILITY

SEEDE is integrated into currently available Code
Bubbles environment. Code Bubbles is available as a binary
distribution from http://www.cs.brown.edu/people/spr/
codebubbles. The current source distribution is available from
SourceForge. The SEEDE execution engine is available from
GitHub. 

899
Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:21:52 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Arvind Arasu, Shivnath Babu, and Jennifer Widom, “The CQL
continuous query language: semantic foundations and query execution,”
The VLDB Journal 15(2) pp. 121-142 (2006).

[2] Steven Arzt and Eric Bodden, “Reviser: Efficiently Updating IDE-/
IFDS-Based Data-Flow Analyses in Response to Incremental Program
Changes,” 2014 International Conference on Software Engineering,
(2014).

[3] R. M. Balzer, “EXDAMS: extendable debugging and monitoring,”
Proceeding of the American Federation of Information Processins
Societies Spring Joing Computer Conferenece, pp. 567-580 (1969).

[4] Marc H. Brown and Robert Sedgewick, “A system for algorithm
animation,” Computer Graphics 18(3) pp. 177-186 (July 1984).

[5] Jonathan Edwards, “Example centric programming,” ACM SIGPLAN
Notices 39(12) pp. P 84-91 (December 2004).

[6] William Finzer and Laura Gould, “Programming by rehearsal,” Byte 9(6)
pp. 187-210 (June 1984).

[7] Chris Gottbrath, “Reverse debugging with the TotalView debugger,”
Cray User Group Conference 2008, (May 2008).

[8] Muhammad Shams Ui Haq, lejian Liao, and Ma Lerong, “Design and
implementation of sandbox technique for isolated applications,” IEEE
Informantion Technology, Networking, Electronic and Automation
Control Conference, (May 2016).

[9] Peter Henderson and Mark Weiser, “Continuous execution: the VisiProg
environment,” International Conference on Software Engineering 1985,
pp. 68-74 (August 1985).

[10] Taesoo Kim and Nickolai Zeldovich, “Practical and effective sandboxing
for non-root users,” Proceedings of USENIX Annual Technical
Conference, (kzpesnru).

[11] Andrew J. Ko and Brad A. Myers, “Debugging reinvented: asking and
answering why and why not questions about program behavior,”
International Conference on Software Engineering 2008, pp. 301-310
(May 2008).

[12] H. Lieberman and C. Hewitt, A Session with Tinker: interleaving
Program testing with program Writing, Proceedings 1980 LISP
Conference (1980).

[13] Henry Lieberman and Christopher Fry, “ZStep 95: a reversible, animated
source code stepper,” in Software Visualization: Programming as a
Multimedia Experience, ed. John Stasko, John Domingue, Marc Brown,
and Blaine Price, MIT Press (1997).

[14] Kivanc Muslu, Yuriy Brun, Michael D. Ernst, and David Notkin,
“Making offline analyses continuous,” ESEC/FSE 15, (August 2015).

[15] Iulian Neamtiu and Michael Hicks, “Safe and timely dynamic updates for
multi-threaded programs,” Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp.
13-24 (2009).

[16] Michael Paleczny, Christopher Vick, and Cliff Click, “The Java HotSpot
server compiler,” in Proceedings of the 2001 Symposium on JavaTM
Virtual Machine Research and Technology Symposium - Volume 1, ,
Monterey, California (2001).

[17] Laszlo Pandy, “Elm‚s time-traveling debugger,” http://debug.elm-
lang.org, (2017).

[18] Chris Parnin and Alessandro Orso, “Are automated debugging
techniques actually helping programmers?,” pp. 199-209 in Proceedings

of the 2011 International Symposium on Software Testing and Analysis,
(2011).

[19] Fabio Petrillo, Zephyrin Soh, Foutse Khomh, <arcelo Pimenta, Carla
Freitas, and Yann-Gael Gueheneue, “Towards understanding interactive
debugging,” 2016 International Conference on Software Quality,
Reliability and Security, pp. 152-163 (2016).

[20] Guillaume Pothier and Eric Tanter, “Back to the future: omniscient
debugging,” IEEE Software 28(6) pp. 78-85 (October 2009).

[21] Slowpoke Productions, “Slowpoke Productions,” http://
www.slowpokeproductions.com, (2016).

[22] G. Ramalingam and Thomas Reps, “A categorized bibliography on
incremental computation,” Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pp. 502-
510 (1993).

[23] Steven P. Reiss, “PECAN: program development systems that support
multiple views,” IEEE Transactions Software Engineering SE-11 pp.
276-284 (March 1985).

[24] Steven P. Reiss, Jared N. Bott, and Joseph J. La Viola, Jr., “Plugging in
and into Code Bubbles: the Code Bubbles architecture,” Software
Practice and Experience, (2013).

[25] Steven P. Reiss, “Code bubbles tutorial,” http://www.cs.brown.edu/
people/spr/codebubbles/tutorial, (2015).

[26] Robert V. Rubin, Eric J. Golin, and Steven P. Reiss, “ThinkPad: a
graphical system for programming-by- demonstration,” IEEE Software
2(2) pp. 73-78 (March 1985).

[27] David Saff and Michael D. Ernst, “An experimental evaluation of
continuous testing during development,” Proceedings 2004 ISSTA, pp.
76-85 (2004).

[28] Alec Sharp, Smalltalk by Example: The Developer‚s Guide, McGraw Hill
(1996).

[29] Andrea H. Skarra, Stanley B. Zdonik, and Steven P. Reiss, “An object
server for an object-oriented database system,” Proceedings Workshop
on Object- Oriented Database Systems, (September 1986).

[30] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley,
“Dynamic software updates: a VM-centric approach,” Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pp. 1-12 (2009).

[31] Phillip Dale Summers, “Program construction from examples,” Yale
research report 51 (1976).

[32] Gu Tianxiao, Chun Cao, Chang Xu, Xiaoxing Ma, Linghao Zhang, and
Jian Lu, “Low-disruptive dynamic updating of Java applications,”
Inforamtion and Software Technology 56(9) pp. 1086-1098 (September
2014).

[33] Bret Victor, “Inventing on Principle,” Talk at CUSEC 2012. Available at
https://vimeo.com/36579366, (2012).

[34] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R. Cook,
“Does continuous visual feedback aid debugging in direct-manipulation
programming systems?,” pp. 258-265 in Proceedings of the ACM
SIGCHI Conference on Human factors in computing systems, (1997).

[35] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar,
“Native client: a sandbox for portable, untrusted x86 native code,” IEEE
Symposium on Security and Privacy, (2009).

[36] Frank Kenneth Zadeck, “Incremental Data Flow Analysis in a Structure
Program Editor,” Ph.D. Dissertation, Department of Computer Science,
Rice University, (1984).

900
Authorized licensed use limited to: Wuhan University. Downloaded on September 13,2024 at 12:21:52 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


