Studying and Understanding the Effectiveness and
Failures of Conversational LLM-Based Repair

Aolin Chen“¢, Haojun Wu®¢, Qi Xin““*,
Steven P. Reiss’, Jifeng Xuan®
¢ School of Computer Science, Wuhan University, China
b Department of Computer Science, Brown University, USA
¢ Hubei Luojia Laboratory, China
{aolin.chen, haojunwu, gxin}@whu.edu.cn, spr@cs.brown.edu, jxuan@whu.edu.cn

Abstract—Automated program repair (APR) is designed to
automate the process of bug-fixing. In recent years, thanks
to the rapid development of large language models (LLMs),
automated repair has achieved remarkable progress. Advanced
APR techniques powered by conversational LLMs, most notably
ChatGPT, have exhibited impressive repair abilities and gained
increasing popularity due to the capabilities of the underlying
LLMs in providing repair feedback and performing iterative
patch improvement. Despite the superiority, conversational APR
techniques still fail to repair a large number of bugs. For example,
a state-of-the-art conversational technique CHATREPAIR does
not correctly repair over half of the single-function bugs in the
Defects4] dataset. To understand the effectiveness and failures of
conversational LLM-based repair and provide possible directions
for improvement, we studied the exemplary CHATREPAIR with
a focus on comparing the effectiveness of its cloze-style and full-
function repair strategies, assessing its key iterative component
for patch improvement, and analyzing the repair failures. Our
study has led to a series of findings, which we believe provide
key implications for future research.

Index Terms—Large language models, conversational APR

I. INTRODUCTION

Automated program repair (APR) aims to alleviate a de-
veloper’s burden by automatically identifying buggy code
and proposing and validating patches for it. Powered by the
large language models (LLMs), advanced APR techniques
have demonstrated remarkable repair abilities. Among them,
conversational APR techniques, which use a conversational
LLM (most notably ChatGPT) to understand the failure and
generate patches, have gained increasing attention due to
the conversational LLM’s unique capabilities in providing
repair accompanying feedback, which helps the developer
understand the repair solution, and opportunities for iterative
patch improvement, which can enhance patch quality.

CHATREPAIR [1] is a state-of-the-art conversational APR
technique that uses ChatGPT as the underlying LLM for bug
repair. It assumes a known buggy location and communicates
with ChatGPT for cloze-style or full-function patch generation
via a prompt that requests generating patched code to replace
the buggy location either as a line or a hunk (cloze-style) or an
entire method (full-function). At the heart of CHATREPAIR is
its key component performing iterative communication with
ChatGPT for two purposes: (1) fixing the previous failing

* Corresponding author

patches generated by ChatGPT in an attempt to obtain a plau-
sible patch making all tests pass and (2) generating alternative
plausible patches to improve patch diversity and increase the
chance of finding a correct patch.

While conversational APR techniques have exhibited supe-
rior repair abilities, they still fail for a large number of real-
world bugs, even those having only one location to repair.
For example, according to a previous evaluation, CHATREPAIR
does not repair 175 (over 50%) of 337 Defects4] bugs whose
developer patches (serving as the ground-truth) change a line,
a hunk (contiguous lines), or a method. There is a lack of
research investigating why conversational APR fails for so
many bugs, even the relatively simple ones. The research
is crucial, as it can provide critical guidance on improving
conversational LLM-based repair.

To bridge the gap, we took CHATREPAIR as an exem-
plary conversational APR technique and conducted a study to
compare CHATREPAIR’s cloze-style and full-function repair
strategies, investigate the effectiveness of its key iterative
component, and analyze the failures. We implemented the
CHATREPAIR tool' using ChatGPT (gpt-3.5-turbo) as the
underlying conversational LLM and two variants of CHATRE-
PAIR for comparison, ONEITER-SH and ONEITER-M, which
perform cloze-style and full-function repair with no iterative
patch improvement. We applied these tools to a sample of
53 Defects4] bugs whose developer patches change a line,
hunk, or method for repair. We slightly adapted the prompts
used by the tools, requesting ChatGPT to provide not only a
patch but also an analysis of the problem and the program
expected behavior. We determined the correctness of a repair
by comparing the patch against the developer patch provided
in the benchmark. We also analyzed the repair failures based
on the patch, the description of the problem, and the program
behavior given by ChatGPT.

The key findings of the study are as follows.

o Cloze-style repair is prone to producing programs that
do not compile. It is not as effective as the full-function
repair, which simply asks ChatGPT to repair the whole
method without indicating any buggy lines of the method.

By the time we ran our experiments, the tool was unavailable.

o CHATREPAIR’s iterative approach for fixing previous
failing patches and finding alternative plausible patches
does not appear to be helpful. Compared to ONEITER-
M, which performs no iteration but independent patch
generation using ChatGPT, CHATREPAIR was not better
and repaired even four fewer bugs.

o ChatGPT is not very good at repairing bugs whose fix
ingredients used for patch construction are not native
(e.g., not as operators or of language specific data types)
and are located outside the buggy method. The success
rate of repairing these bugs is 45% and is lower than those
for bugs whose fix ingredients are all native (100%) and
are only within the scope of the buggy method (60%).

e The main reasons for ChatGPT’s failure are that (1) it
misunderstands the failure and root cause; (2) it does not
know the program expected behavior; and (3) it fails to
find the key fix ingredients for patch generation.

These findings suggest that method-level fault localization is
better suited for conversational LLM-based repair than those
targeting smaller code granularities such as statements; that
current iterative communication with ChatGPT does not fulfill
its potential in improving the patch quality; and that future
research on ChatGPT-based repair should focus on helping
ChatGPT understand the problem, infer the expected behavior,
and identify relevant fix ingredients.

II. RESEARCH QUESTIONS

We seek to answer the following five research questions:
1) RQ1: How effective are ONEITER-SH and ONEITER-
M?
2) RQ2: How effective is CHATREPAIR’s iterative patch
improvement?
3) RQ3: Where are the fix ingredients of the failed repairs?
4) RQ4: What is the connection between ChatGPT’s anal-
ysis and the patch?
5) RQS: What are the reasons for ChatGPT’s failures?
For RQ1, we compare the effectiveness of cloze-style and
full-function repair strategies. For RQ2, we evaluate CHATRE-
PAIR’s core iterative patch improvement component. For RQ3,
we analyze the locations of the fix ingredients used for patch
construction across different bugs and calculate the success
rates of repair with them. For RQ4, we classify ChatGPT’s
analyses into fully correct, partially correct, and incorrect,
and then statistically evaluate the repair outcomes for each
category. We do these to understand ChatGPT’s responses and
uncover the relationship between its analysis and the patch.
Finally, for RQS5, we identify and summarize the key reasons
for ChatGPT’s repair failures based on the issues explored in
the previous research questions.

III. EXPERIMENT SETUP, METHOD, AND RESULTS

We implemented the CHATREPAIR, ONEITER-SH, and
ONEITER-M tools based on the algorithm and prompt ex-
amples provided in the paper [1]. As previously explained,
we slightly modified the original prompts to assess the tools’
abilities of problem understanding and expected behavior

inference. The code and all experimental results can be found
in our repository?, in which the README file includes the
implementation details of the tools.

We chose the widely used Defects4] dataset as a benchmark.
Because CHATREPAIR currently only supports repairing a
single function, we only considered single-function bugs for
experiments. Due to the cost incurred by the manual patch
review and repair result assessment, we used a sample of
the single-function bugs in the original dataset. To have the
sample, we randomly selected from each of the six projects
(Lang, Chart, Closure, Mockito, Math, and Time) 5 single-
hunk (including single-line) bugs and at most 5 multi-hunk
bugs that have two or three hunks to repair (depending on the
number of such bugs in the project). In this way, we obtained
30 single-hunk and 23 multi-hunk bugs. Following previous
evaluation of APR techniques [1], [2], we determined the
correctness of each patch manually by comparing the patch
against the developer patch and checking whether they are
semantically equivalent.

A. RQI: How effective are ONEITER-SH and ONEITER-M?

We selected 30 single-hunk bugs and ran both tools three
times to repair each bug. This process yielded a total of 180
repair results, with 90 results generated by each tool.

TABLE I
COMPARISON OF ONEITER-SH AND ONEITER-SH. RT: REPETITION
TIMES; CE: PERCENTAGE OF COMPILATION ERRORS; CP: PERCENTAGE
OF CORRECT PATCHES.

Method RT CE CP
ONEITER-SH 3 | 58.9% 6.7%
ONEITER-M 3 11.1% | 23.3%

TABLE I shows that 58.9% of the repairs given by
ONEITER-SH have compilation errors, while ONEITER-M’s
repairs have much fewer (only 11.1%) compilation errors.
ONEITER-M’s correct repair rate is 23.3% whereas ONEITER-
SH’s rate is only 6.7%. This shows that ONEITER-M is
significantly more effective than ONEITER-SH.

We identified three types of compilation errors from
ONEITER-SH’s result: (1) the patch contains redundant con-
text for the target location; (2) the patch is not made at the
target location; and (3) the patch introduces undefined items
such as variables. The first two types are dominant, accounting
for 92.5% of the errors. For ONEITER-M, compilation errors
arose for two reasons: the introduction of undefined items and
incomplete code generation.

Finding 1: The cloze-style repair strategy generates
a substantial number (58.9%) of invalid patches with
compilation errors.

ONEITER-SH generated correct patches in 6 cases for 5
bugs, and ONEITER-M found correct patches in 21 cases
for 9 bugs. Lang-24 and Lang-51 are two bugs that were
only repaired by ONEITER-SH but not by ONEITER-M. The

Zhttps://github.com/Aric3/an-implementation- of-chatrepair

buggy methods for these two bugs are long, and they both
exceed 50 lines, making ChatGPT difficult to identify the exact
location to repair. The remaining 3 bugs correctly repaired by
ONEITER-SH were also repaired by the ONEITER-M. 16 of
the 21 correct patches made by ONEITER-M are significantly
different from the developer patches in terms of the syntax. In
contrast, only 1 of the 6 correct patches made by ONEITER-
SH are syntactically different from the developer patch.

Finding 2: The full-function repair strategy can
generate a diverse range of patches, increasing the
likelihood of finding a correct patch. It however is not
very effective at repairing long methods.

B. RQ2: How effective is CHATREPAIRs iterative patch im-
provement component?

To evaluate CHATREPAIR’s iterative patch improvement, we
set the maximum number of attempts used by CHATREPAIR
to 24 (Xia et al. reported an average of 21.86 attempts used
by CHATREPAIR for plausible patch generation). We also
set the number of repetitions for ONEITER-M to 24. This
setup ensures that both CHATREPAIR and ONEITER-M call
ChatGPT API 24 times per bug, enabling a fair comparison of
the iterative patch improvement component versus independent
repeated prompting. Our result shows that the ONEITER-M
method repaired 23 bugs, whereas the CHATREPAIR method
repaired only 18. Moreover, during the plausible patch genera-
tion, CHATREPAIR produced duplicate patches that constituted
65% of the total patches.

Finding 3: CHATREPAIR’s iterative patch improve-
ment demonstrates no significant advantage over in-
dependent repeated prompting. Moreover, its plausi-
ble patch generation process produces a substantial
proportion of duplicate patches (65%), weakening its
overall effectiveness.

C. RQ3: Where are the fix ingredients for the failed repairs?

We referenced Yang et al’s work [3] to classify the fix
ingredients into three distinct categories based on their sources.
The intrinsic category refers to fix ingredients defined as
native tokens including operators and keywords such as basic
data types and control structures. The local method category
encompasses fix ingredients retrieved from the buggy method.
Since CHATREPAIR operates at the method level, we group the
remaining fix ingredient categories under the label “others”.
This is because fix ingredients from these categories do not
appear in the provided prompts. We used scripts from Yang
et al’s code repository® to analyze and determine the fix
ingredient category for each bug.

Across all repair experiments, 28 bugs were successfully
repaired. We found that all five bugs requiring fix ingredients
at the intrinsic level were successfully fixed, while the repair
rate for bugs with fix ingredients at the local method level is
60%. For the remaining 38 bugs, which required fix ingredients

3https://github.com/Deheng Yang/repair-ingredients

beyond the local method level, the repair rate dropped to
45%. Although a correct patch does not need to exactly match
the developer patch, the fix ingredient level provides valuable
insight into the complexity of the code elements required
for bug repair. When addressing bugs whose fix ingredient
scopes are intrinsic and local method, ChatGPT only needs
to generate built-in keywords, standard library functions, or
ingredient defined within the buggy method, which avoids
the need to incorporate external project dependencies, making
these bugs comparatively easier to repair.

Finding 4: ChatGPT struggles with bug repair that
needs fix ingredients from outside the buggy method.
The success rate of such repair is 45%, significantly
lower than those of repairs requiring intrinsic (100%)
or local method (60%) fix ingredients.

D. RQ4: What is the connection between ChatGPT’s analysis
and the patch?

The patch generation instructions provided at the end of the
prompt explicitly requested ChatGPT to provide an analysis
of the issue following a standardized format illustrated in
an example. We collected and manually analyzed 249 repair
results from ONEITER-M and ONEITER-SH. To classify the
analysis results, we used the following questions to establish
three evaluation criteria.

1) Does the response identify the erroneous code lines?
2) Does the response explain the reason for the error?
3) Does the response clarify the logic behind the failure?

A fully correct analysis must satisfy all three criteria.
Partially correct analyses are further categorized into three
types, which are (1) Partial Explanation of the Reason: The
response addresses only one or two of the outlined criteria;
(2) Superficial Explanation: the response fails to meet any
specific criterion and provides only a general description of the
test case failure; and (3) Explanation with Extra Errors: The
response includes correct explanations that satisfy the criteria,
but it also contains additional incorrect explanations. If none
of the criteria are met, the analysis is classified as incorrect.

TABLE 11
THE PROPORTION OF CORRECT REPAIRS UNDER VARYING ANALYSIS
CATEGORIES. SH: SINGLE-HUNK AND SINGLE-LINE; MH: MULTI-HUNK;
CP, CA, PCA, AND IA ARE THE NUMBERS OF CORRECT PATCHES,
CORRECT ANALYSES, PARTIALLY CORRECT ANALYSES, AND INCORRECT
ANALYSES, RESPECTIVELY.

Bug Type Method CP/CA | CP/PCA | CP/IIA
SH ONEITER-SH 10/21 1/8 0/61
SH ONEITER-M 17/29 1/15 1/46
MH ONEITER-M 8/16 1/30 0/23

Our statistical analysis reveals a strong correlation between
ChatGPT’s problem analysis and the quality of its patches.
According to Table II, when ChatGPT correctly understands
the problem, the success rate for generating correct patches
is 37.8% (25/66). In contrast, the rate drops significantly
when the analysis is incomplete to less than 5.7% (3/53)

for partially correct analyses and to only 0.8% (1/130) for
incorrect analyses.

Finding 5: ChatGPT rarely makes correct patches if
it does not understand the problem.

E. RQ5: What are the key reasons for ChatGPT'’s failures?

We examined 210 instances of failed repairs from
ONEITER-M and ONEITER-SH and identified three reasons
for ChatGPT’s repair failures. The first reason is that ChatGPT
fails to understand the root cause of the failure. For 66% of
the repairs, ChatGPT gave incorrect problem analysis. From
the results of RQ4, when the problem analysis is incorrect,
ChatGPT can rarely make a correct repair. Future research
should investigate providing more effective code- and failure-
related information to help the LLM achieve better problem
understanding.

The second reason is that ChatGPT does not know the
expected program behavior, that is, the behavior of the correct
program. This is especially the case when the repair involves
adding new code, as it is often difficult to infer a missing
behavior. Although the failing test case has assertions that
encode the expected execution outcome, ChatGPT can still
have difficulty understanding what is expected as the final
output or the internal state at the repair location.

The third reason is that ChatGPT fails to find the key fix
ingredients for patch generation. As discussed in Section III-D,
ChatGPT is not highly effective at using the fix ingredients
from the local method (success rate 60%) for patch generation.
It can also often fail to generate a patch that needs fix ingredi-
ents beyond the local method scope (success rate 45%), which
is understandable since the prompt used by ChatGPT does not
include fix ingredients from outside the buggy method.

In addition to these primary reasons, others include fail-
ure to understand the logic of the buggy method, failure
to understand the logic of methods invoked by the buggy
method, misunderstanding of prompt instructions, incomplete
code generation, and failed test case overfitting. Overall, 66%
of the failed repairs are related to problem understanding,
27% to expected behavior inference, and 15% to fix ingredient
search. The remaining reasons collectively accounted for less
than 10%. Note that the numbers do not add up to 100%, as
a failed repair may be due to multiple reasons.

Finding 6: The main reasons for ChatGPT’s repair
failures are (1) it fails to understand the root cause of
the failure; (2) it does not know the expected program
behavior; and (3) it fails to find the key fix ingredients
for patch generation.

IV. RELATED WORK

Sobania et al. [4] evaluated ChatGPT’s repair performance
using a simple prompt including only the buggy code and a
query for repair without iteration. They conducted experiments
on the QuixBugs dataset containing only 40 programming-
level bugs. Their results may not reflect the LLM’s ability
in repairing more complex real-world bugs. Zhang et al. [5]

developed an iterative repair approach based on ChatGPT
and evaluated its performance on the EVALGPTFIX dataset
containing competition bugs. They classified the competition
bugs into three categories and designed prompts for each. The
prompts and the approach may not be suitable for real-world
bug repair. Xia et al. [1] introduced CHATREPAIR, a state-
of-the-art ChatGPT-based conversational repair method. Their
work lacks an analysis of the responses generated by ChatGPT
that include both textual explanations and code patches. In our
work, we evaluated the repair effectiveness of CHATREPAIR
on Defects4], focusing particularly on bugs it failed to repair.
Through a detailed analysis, we identified and summarized the
reasons behind these repair failures from multiple perspectives.

V. THREATS TO VALIDITY

Potential errors from tool implementation and manual anal-
ysis pose threats to the validity of the study, although we have
carefully tested the tools and checked our results. We released
the tool and results for public review and examination. Our
results may not generalize to other LLM models or datasets,
and they could be influenced by the randomness of ChatGPT.
We hope to conduct a larger-scale study as future work.

VI. CONCLUSION AND FUTURE WORK

We conducted a study to understand the effectiveness and
failures of conversational LLM-based APR. The study is
based on the state-of-the-art technique CHATREPAIR. We in-
vestigated CHATREPAIR’s cloze-style and full-function repair
strategies, assessed its core iterative component for patch
improvement, and analyzed its repair failures. The study has
led to several findings that we believe provide important
implications for APR research. We are currently exploring ap-
proaches to improving ChatGPT’s understanding of problems
for better patch generation. Future work includes conducting
extensive experiments that incorporate more conversational
APR techniques and evaluate them on diverse benchmarks,
particularly those not subject to data leakage.

VII. ACKNOWLEDGEMENT

This work was partially supported by the National Nat-
ural Science Foundation of China under the grant numbers
62202344 and 62141221 and the OPPO Research Fund.

REFERENCES

[1] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing 162
out of 337 bugs for $0.42 each using ChatGPT,” arXiv preprint
arXiv:2304.00385, 2023.

[2] C.S. Xia and L. Zhang, “Less training, more repairing please: revisiting
automated program repair via zero-shot learning,” in ESEC/FSE, 2022,
pp. 959-971.

[3] D. Yang, K. Liu, D. Kim, A. Koyuncu, K. Kim, H. Tian, Y. Lei, X. Mao,
J. Klein, and T. F. Bissyandé, “Where were the repair ingredients for
Defects4] bugs?” Empir Software Eng, vol. 26, no. 6, p. 122, 2021.

[4] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of
the automatic bug fixing performance of ChatGPT,” arXiv preprint
arXiv:2301.08653, 2023.

[5] Q. Zhang, T. Zhang, J. Zhai, C. Fang, B. Yu, W. Sun, and Z. Chen,
“A critical review of large language model on software engineering: An
example from ChatGPT and automated program repair,” arXiv preprint
arXiv:2310.08879, 2023.

