
Quick Repair of Semantic Errors for Debugging
Steven P. Reissa, Xuan Weib, Qi Xinb∗

a Department of Computer Science, Brown University, USA
b School of Computer Science, Wuhan University, China

spr@cs.brown.edu, {isabel1015, qxin}@whu.edu.cn

Abstract—Current automatic program repair (APR) ap-
proaches typically require a high-quality test suite and can take
considerable time. Developers need to fix program problems
during development from within an IDE. They generally do
not have a high-quality test suite or a lot of time to find and
fix problems. We explore a new approach to APR that is more
practical and can be used within an IDE. Our prototype system,
ROSE, is invoked while debugging and does not require a test
suite. Our initial evaluations confirm its effectiveness and utility.

I. INTRODUCTION

Our goal is to make automatic program repair (APR)
practical and widely used. We envision APR becoming part
of an Integrated Development Environment (IDE) and being
routinely used by programmers to fix errors during system
development and testing.

Current APR techniques are not well-suited to be integrated
into an IDE for debugging. They typically require an exten-
sive, high-quality test suite to produce effective repairs. A
high-quality test suite however is generally unavailable. As
suggested by [1], [2], developers often do not write test suite
containing a sufficient number of test cases if they write tests
at all. Also, it has been shown that test-based APR techniques
are inefficient [3]. A small number of APR techniques work
without a test suite. However, they are still slow and are
severely limited, either by being restricted to specific types
of bugs [4], [5] or requiring other forms of specification such
as bug reports [6].

We wanted to develop a system that would let developers
use APR techniques to fix semantic errors much as how
Eclipse’s Quick Fix [7] and Visual Studio’s Auto Correct [8]
handle syntactic errors. Such a system needs to be reasonably
fast and work for a variety of errors. As with Quick Fix, it
does not have to be perfect, and should fail quickly when it
cannot find a fix.

To demonstrate that such an approach is possible and a vi-
able direction for APR research, we are developing a prototype
system, ROSE (Repairing Overt Semantic Errors), that can be
integrated into an IDE to provide semantic error correction
suggestion. ROSE differs from existing APR techniques in
that it does not require a test suite, that it does not focus on
specific types of bugs, and that it uses non-test-based, efficient
strategies to localize error and produce and validate patches.
ROSE starts by interacting with the developer to obtain a
quick description of the problem symptom showing what
is wrong with the current program behavior. Based on this

∗ Corresponding author

description, ROSE follows a generate-and-validate procedure
to make repair suggestions by performing fault localization,
patch generation, and patch validation.

For fault localization, it uses a flow analysis to build a dy-
namic backward slice. ROSE uses an combination of pattern-
based, search-based, and deep-learning-based patch generation
approaches to generate candidate patches for each location. It
validates the patches and sorts them using a novel approach
that compares full execution traces of the original program and
the patched program, accounting for the problem symptom and
various matching conditions. Finally, it presents the repairs as
they are found in priority order.

We evaluated ROSE on two published benchmarks,
QuixBugs [9] and a subset of the Defects4J errors [10]. We
found that ROSE is competitive with existing repair techniques
in terms of finding correct repairs, and could do so in well
under a minute (often seconds). We also did a user study with
26 participants recruited for performing four debugging tasks.
The results showed that ROSE is helpful for debugging.

ROSE is available as open source at https://github.com/
StevenReiss/rose. A video showing ROSE in action can be
seen at https://youtu.be/GqyTPUsqs2o.

II. OVERVIEW OF ROSE

ROSE is designed to work in conjunction with an IDE and a
debugger. It performs six steps to generate repair suggestions
without test suite: problem definition, fault localization, repair
generation, base line execution generation, repair validation,
and repair presentation. We next discuss each step in turn.
Problem definition. ROSE assumes the developer is using
the debugger and the program is suspended with an observed
problem caused by a semantic error. The developer invokes
ROSE at the line where the program stopped. ROSE starts by
asking the developer to quickly specify the problem symptoms,
which are the observed problems caused by the error (not the
error itself). In the absence of test suite, the defined problem
can help localize the error and validate patches.

To obtain problem symptoms, ROSE queries the debugger
to get information about the stopping point and popping up a
dialog. If the program is stopped due to an exception, ROSE
assumes that the exception is the problem; if the program
is stopped due to an assertion violation, it assumes that is
the problem. Otherwise, the developer can indicate that a
particular variable has the wrong value or that execution
should not reach this line. The latter could arise if the code
includes defensive checks for unexpected conditions.

9

2023 IEEE/ACM International Workshop on Automated Program Repair (APR)

979-8-3503-0214-1/23/$31.00 ©2023 IEEE
DOI 10.1109/APR59189.2023.00008

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l W
or

ks
ho

p
on

 A
ut

om
at

ed
 P

ro
gr

am
 R

ep
ai

r (
AP

R)
 |

 9
79

-8
-3

50
3-

02
14

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AP

R5
91

89
.2

02
3.

00
00

8

Authorized licensed use limited to: Wuhan University. Downloaded on September 12,2024 at 12:35:34 UTC from IEEE Xplore. Restrictions apply.

Fault localization. After the problem is defined, the developer
asks ROSE to suggest repairs, code changes that will fix the
original problem. ROSE first does fault localization to identify
where the error might be. In the absence of test suite, ROSE
uses an abstract interpretation-based flow analysis to statically
compute a partial backward dynamic slice from the stopping
point to identify potential lines to repair. The slice is partial
because ROSE takes into account the problem definition and
the current execution environment to create an accurate slice
for this particular situation, and then limits the slice based on
execution distance from the stopping point.
Repair generation. ROSE next generates potential repairs
for each identified location. ROSE supports pluggable repair
suggesters. It currently provides pattern-based, search-based,
and learning-based suggesters to quickly find simple, viable re-
pairs. In addition to generating a repair, ROSE also provides a
description of the repair and a syntactic priority approximating
its likelihood of being correct.
Baseline execution generation. The next step is to create
a baseline execution that duplicates the original problem as a
foundation for validating suggested repairs. This is represented
as a full program trace including both control and data
flow created by a live-programming facility without rerunning
the system. In general, a full problem-duplicating execution
might have involved user or external events and can be too
complex to obtain. To ensure efficient and practical repair
validation, ROSE considers only the execution of an error-
related routine on the current call stack and everything it calls.
ROSE identifies a suitable error-related routine for which a
partial problem-duplicating execution including the potential
fault locations would be relatively easy to create, obtains the
complete execution history of that routine, and finally finds
the current stopping point in the execution history to obtain
the partial execution.
Repair validation. ROSE next validates the suggested repairs
using the baseline execution. This is done by comparing the
full trace of the baseline execution with the corresponding
simulated trace of each repaired program. ROSE takes into
account the problem symptom and a variety of matching
situations to compute a semantic priority score approximating
the likelihood of the problem being fixed and the repair
being non-overfitting. The semantic priority score is used in
conjunction with the syntactic priority derived from repair
generation to create a final priority score for the repair.
Repair presentation. Finally, ROSE presents the potential
repairs to the developer. It limits this presentation to repairs
that are likely correct by showing the repairs in priority order.
The repairs are displayed as they are validated. In this way,
the developer can preview or make a repair as soon as it is
found.

III. EVALUATION

We evaluated ROSE on all 40 QuixBugs errors and a set of
32 Defects4J (v2.0.0) errors that are relevant with ROSE’s
assumptions on repair simplicity. These are errors whose
repairs involve one-line changes and are close (execution-wise)

to the stopping point based on a predefined threshold. For
each error, we created an Eclipse project including the buggy
code, a main program that effectively ran a failing test, and a
problem symptom based on the failure. Then we asked ROSE
to try to fix the problem and measured the time it took.

For QuixBugs, ROSE found repairs for 17 of the 40 bugs
with a median total time of ∼5 seconds. Of the repairs
generated, 14 were the top ranked repairs, two of them were
ranked second, and one ranked fourth. For Defects4J, it found
repairs for 16 of the 32 bugs with a median time to find and
report the correct repair of ∼7 seconds. For 12 of the bugs, the
correct repair was top ranked. Two other correct repairs were
second ranked, and then one correct repair was third ranked
and one was fourth. The best prior results for QuixBugs was
repairing 11 bugs with a median time of 14-76 seconds. For
the Defects4J subset, prior APR results had fixed 4-18 bugs,
with a median time generally over 4 minutes.

We also did a user study to evaluate ROSE’s utility. We
recruited 26 student participants, assigned them to two groups
to perform 4 debugging tasks with and without ROSE, and
compared their performance. These 4 tasks are created based
on errors selected from the benchmarks. Our results showed
that ROSE helped 44.6% more participants find the correct
repair and that participants who did not use ROSE spent 56.9%
more time for debugging. The feedback given by participants
showed that they find ROSE useful and they like ROSE.

Overall, our research shows that APR within an IDE without
a test suite (or even a test case) is both possible and practical.
We plan continuing research to expand ROSE and to investi-
gate how such an approach could become widely used.

Acknowledgement: This work was partially supported by
the National Natural Science Foundation of China under the
grant numbers 62202344 and 62141221.

REFERENCES

[1] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical study
of adoption of software testing in open source projects,” in ICQS, 2013,
pp. 103–112.

[2] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how, and
why developers (do not) test in their ides,” in FSE, 2015, pp. 179–190.

[3] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim, P. Wu,
J. Klein, X. Mao, and Y. Le Traon, “On the efficiency of test suite based
program repair,” in ICSE, 2020, pp. 615–627.

[4] X. Gao, B. Wang, G. J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury,
“Beyond tests: Program vulnerability repair via crash constraint extrac-
tion,” TOSEM, pp. 1–27, 2021.

[5] R. van Tonder and C. L. Goues, “Static automated program repair for
heap properties,” in ICSE, 2018, pp. 151–162.

[6] A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, M. Monperrus, J. Klein,
and Y. Le Traon, “iFixR: Bug report driven program repair,” in FSE,
2019, pp. 314–325.

[7] (2023) Eclipse’s Quick Fix. [Online]. Available: https://wiki.eclipse.
org/FAQ What is a Quick Fix%3F

[8] (2023) Visual Studio’s Auto Correct. [Online]. Available: https:
//marketplace.visualstudio.com/items?itemName=sygene.auto-correct

[9] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A multi-
lingual program repair benchmark set based on the quixey challenge,”
in SIGPLAN Companion, 2017, pp. 55–56.

[10] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” in ISSTA,
2014, pp. 437–440.

10

Authorized licensed use limited to: Wuhan University. Downloaded on September 12,2024 at 12:35:34 UTC from IEEE Xplore. Restrictions apply.

